Category:Synthetic Biology

From RoSBNet
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Synthetic Biology is a new research field which aims in designing new or modifying existing biological pathways in order to produce systems with superior or different properties, usually for a novel application. In the related field of systems biology, it is recognized that it is impossible to infer the biological network behaviour by just listing its components but rather the whole feedback mechanism linking them needs to be considered; the same is true in every Synthetic Biology design. However, these designs need to be implemented inside a cellular environment and a major challenge that synthetic biology has to face is that the effect of the interactions of the new pathways with the cellular environment need to be taken into account during the design or redesign process. This is unlike any other engineering design procedure, such as electrical circuit or computer engineering design, where the behaviour of simple parts (e.g., resistors), of more complicated components (e.g., transistors) or even of whole systems (e.g., complete circuits) can be predicted (and eventually measured and verified) efficiently after implementation. This unique feature to Synthetic Biology designs poses new challenges to engineering and mathematics. At the same time, many engineering disciplines, such as control and computer engineering, have for years been dealing with the analysis and design of complex systems that have to operate robustly in uncertain environments and therefore have a lot to contribute towards constructing biological modules, whether these are parts, pathways, artificial cells or cultures/tissues with performance guarantees within an uncertain environment.

This category currently contains no pages or media.