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Stochastic Influences on

’henotype

Fingerprints of identical twins

J. Raser and E. O’Shea, Science, 1995.

Cc, the first cloned cat and her genetic mother

J. Raser and E. O’Shea, Science, 1995.

variability in gene expression

Elowitz et al, Science 2002
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Modeling Gene Expression

Deterministic model
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Modeling Gene Expression

t Stochastic model

- i Tp N e Probability a single mRINA is transcribed in
: g ¢ time dt is k,dt.
protein |

- ‘ e Probability a single mRNA is degraded in

time dt is (#mRNA) - ~,.dt




Fluctuations at Small Copy Numbers
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Fluctuations at Small Copy Numbers
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Mass-Action Models Are Inadequate
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- Stochastic mean value different from deterministic steady state
* Noise enhances signal!

Johan Paulsson , Otto G. Berg , and Mans Ehrenberg, PNAS 2000




Formulation of Stochastic Chemical Kinetics

Reaction volume=X?

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region d<2 is
given by %.

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature 1. The velocity of a
molecule is determined according to a Boltzman distribution:

m 2

foz (V) = fo,(v) = fo.(v) = QWZLBT e 26T




Population: X(t) = [X1(2),..., Xxn(@®)]! (integer r.v.)

e (M-reactions) The system’s state
can change through any one of
M reaction: R, :p€e{1,2,...,M}..

Example: Ry ¢ — Sq
Ro S1+ 85— 51
Ry 51— ¢

o (State transition) An R, re-
action causes a state transition
from X to X+ s.

(3 o

Stoichiometry matrix:

;‘EL — SZ[Sl Clo)
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e (Transition Probability) Probability that R, reaction will occur
in the next dt time units is: w,(z)dt

Example: wi(x) = c1; wolx) = o - w120, wi(x) = c3x1;




Characterizing X(t)

X (t) is Continuous-time discrete-state Markov Chain

Sample Path Representation:

M ¢
X)) =X0)+ > spY; Uo wi (X (s))ds Y.[-] are independent unit Poisson

k=1

The Chemical Master Equation (Forward Kolmogorov Equation)

dp(;ﬂ; D = ) Y (@) + X p(a — spo ()
L k

p(x,t) ;= prob(X(t) = x)




From Stochastic to Deterministic

- X
Define X$2(t) = %

Question: How does X%2(t) relate to ®(¢)?

Fact: Let ®(¢) be the deterministic solution to the reaction rate equa-

tions

dd
d— = Sf(P), ®(0) = bo.
t
Let XQ(t) be the stochastic representation of the same chemical sys-

tems with X$2(0) = ®y. Then for every t > 0:

im sup ‘XQ(S) —<|>(s)\ =0 a.s.

Q—oo 5<t




Simulation and Analysis

Sample Paths Computations
Moment Computation

SDE Approximation

Density Computations




1. Sample Paths Computation

Gillespie’s Stochastic Simulation Algorithm:

To each of the reactions {Ri,..., Ry} we associate a RV 7;:

7; IS the time to the next firing of reaction R;

Fact O: 7; is exponentially distributed with parameter w;

We define two new RVs:
T =min{7;} (Time to the next reaction)

pw=arg min{r;} (Index of the next reaction)

Fact 1: 7 is exponentially distributed with parameter ZZ w;
Wi,

Zi Wi

Fact 2: P(u=k) =




Stochastic Simulation Algorithm

e Step O Initialize time t and state population x

e Step 1 Draw a sample » from the distribution of r

Cumulative distribution of 7: F(t) = 1 —exp(— ) wt)

r1 € U(]O, 1] —

1 | 1

/ T S 09T

time (s)

e Step 2 Draw a sample p from the distribution of u

Cumulative distribution of u

(w1 +wo + w3z +wg)/ Xk wg
(w1 + w2 +w3)/ Xk wy
ro € U([0,1]) —

(w1 4+ w2)/ >k wy

w1/ Yk Wk

reaction index

e Step 3 Update time: t <+ ¢+ 7. Update state: z «— x + s,.



2. Moment Computations

Let w(z) = [wi1(x),...,wy(x)]! be the vector of propensity functions

Moment Dynamics

dE[X]

dt
dE[X X 1]

dt

= 5 Elw(X)]

SE[w(X)XT] 4+ E[Xw! (X)]ST + S diag(E[w(X)]) ST

e Affine propensity. Closed moment equations.
e (Quadratic propensity. Not generally closed.

— Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)
— Derivative Matching (Singh, Hespanha)




Affine Propensity

Suppose the propensity function is affine:

w(x) = Wx + wo, (W is N x N, wgis N x 1)
Then E[w(X)] = WE[X]4+wg, and E[w(X)X1] = WE[X XL+ woE[X!].

This gives us the moment equations:

d . .
%E[X_ SWE[X] 4+ Swqg First Moment
d . _
ﬁE[XXT_ SWE[XXT1+ E[XXT1WTST + S diag(WE[X] 4+ wg)ST

SwoE[X '] E[X]wgST Second Moment

These are linear ordinary differential equations and can be easily solved!




Application to Gene Expression

Reactants
X1(t) is # of mMRNA; X»(t) is # of protein

g Reactions
| 8
G :

o — mRNA

protein i 3 : mRNA ﬁ ¢
-
k

:mRNA ﬁ> protein + mRNA

p . protein I 0

Stoichiometry and Propensity
1 -1 0 O]
O 0 1 —-1]

g —

_ kr _
YrX1

_’YpX 2

w(X) =




Steady-State Moments

Steady-State Covariance

_ 2k 0
BBY = 8 diag(WX + wo)ST = Or 2kpky

Yr

T he steady-state covariances equation
A +5AT + BBT =0 Lyapunov Equation

can be solved algebraically for X.

_ . ok i}
Tr Yr(yr +’Yp)

kpkr kpky (11 kp )
yr(yrtyp) Wy D




3. SDE Approximation

Q) .— X()

Write X% = dg(t) + \}_VQ where ®g(t) solves the deterministic RRE

dd
= Si(®)

Linear Noise Approximation

V() — V() as Q — 0o, Wwhere dV (t) = A1)V (t)dt + B(t)dW,;

d[Sf(®)]
dP

At) = (Po(t)), B(t) := Sy/diag[f(®o(t))]

Linear Noise Approximation: X 2(¢) ~ ®(t) \/%V(t)




Linear Noise Approximation: Stationary Case

Multiplying X%(¢) ~ ® + LV (t) by Q, we get
V2

X(t) = QP+ VOV (1)

Zero mean

deterministic )
stochastic

E[X ()] = Q&

Let > be the steady-state covariance matrix of V2 -V (¢t). Then

AT QBB =0




(white gaussian noise)

Qo (mean)




4. Density Computation

We are interested in p(x.t), the probability that the chemical system will be in
state x at time, t.

Form the probability density state vector P(X,-) : R — {1 -
P(X;t) 1= [p(x1;t) p(x2it) p(xzit) ... 17

The Chemical Master Equation (CME):

M M
p(X;t) = —p(X;t) Z: a;(X)+ Z: p(X—vy; t)au(X—vyu)

p=1 p=1

can now be written in matrix form:

P(X;t) =A- -P(X;t)
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The Finite State

Projection Approach

e A finite subset is appropriately
chosen




The Finite State

Projection Approach

e A finite subset is appropriately
chosen

 The remaining (infinite) states are
projected onto a single state (red)




The Finite State Projection Approach

e On

‘)

e A finite subset is appropriately
chosen

 The remaining (infinite) states are
pro

jected onto a single state (red)

y transitions into removed

states are retained

The projected system can be solved exactly!




Finite Projection Bounds

Let J = [m1...my] be an indexing vector. We define A}
to be the principle submatrix of A defined by J.

4 )
Theorem [Projection Error Bounds] Consider any Markov

process described by the Forward Kolmogorov Equation:

P(Xj;t)=A-P(X;t).

If for an indexing vector J: 11 exp(A;T)P(X;;0) > 1 — ¢, then

P(X;t)]  [|exp(A)P(Xs;0)

_P(XJ/; t)_ | 0 < € t € [0,T]

1111

Munsky B. and Khammash M., Journal of Chemical Physics, 2006



Applications of FS

Feedback Analysis
Synthetic Switch Analysis
Epigenetic Switch Analysis
System Identification




Application: Noise Attenuation through Feedback
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Analysis of Stochastic Switchs
V

Gardner, et al., Nature 403, 339-342 (2000)
52 Gene S2 Promoter

S1 Promoter 51 Gene

U

v Inhibits the prOdUCtiOﬂ of u: Time=0.2s‘;..I‘E.rff).r‘.:‘.l'f.(i‘.}.f-Sz

) = _ [ 1 ]

14+08 M1 0

U inhibits the production of v:

2 0
a3(u,v) = 1+ V3 = [ 1 ]

u and v degrade exponentially:

o D)= = [ _01 ]

) = Y= [ Y ]

o u(0) = v(0) =0



Using Noise to Identify Model

Parameters




Why use noise”

? ? @
IPTGOUT—> IPTGIN —49

Lacl -
I 17 ?
lacI Promoter "

lacl lacl lac GFP

Noise provides an excitation source for the network dynamics
Resulting distributions of proteins can be measured

Such distributions provide a lot of information about the dynamics
Can they be used to identify model parameters?

Noise has been used to discriminate among competing models

Dunlop et. al (2008). Nature Genetics. Regulatory activity revealed by dynamic correlations in gene expression noise.




|dentification from Moment Information

Y
protein 3 " 2
g8 =

v(t) :=[E{I} E{z*} E{y} E{y*} E{zy} ]T

Identifiability

Can one identify the parameters A\ = {k1, 71, k2, 72, k21 } from measurements
of the moments v(t)?




|[dentifying Using Steady-State Moments

J Can the stationary distribution be used to identity
orotein 3 | Vs all the parameters?
( QI

|

] &
v(t) :=[E{;r} E{z?} E{y} E{y*} E{:vy}]

Voo = tlim [v1, v2, V3, v4, 5]
e de @

Full Identifiability with Stationary Moments

Impossible!




|[dentifiability from Transient Time-Measurements

] i
v(t):=| E{z} E{s?} Ely} E{*} E{ay} |

oon & o
‘ i‘ g

Multiple Measurements

Suppose v; := v(t;) has been measured at equally
separated points in time {tg,t1,...,tm }

Identifiability with Multiple Moment Measurements
For m = 6 the model parameters are identifiable.




|dentification with Two Measurements

Identifiability of Transcription Parameters

Suppose the mean and variance are known at two times tg < t1 < 00,
and define (po,00) 1= (u(to), o(to)) and (p1,01) := (p(t1), o(1)).

Then the transcription parameters are identifiable, and

1 2 — exp(—
y=—— 10 <O’; ,ul) L — f}/ull Xp( ’77_),“0 . (,7_ =t — tO)
o8 — o — exp(—77)

2T

Identifiability of Transcription & Translation
protein 3 Parameters

1 &
v(t) :=[E{;1?} E{z?} E{y} E{y*} E{l’y}]

e Given v(tg) and v(t1), there is strong theoretical and nu-
merical evidence that unique identifiability of all parameters
k1, ko, 1,72 1s always possible.

e An analytic expression exists for finding the parameters.

A\vi = Aye® vy — (I —e™ )b




Using Densities to ldentify Network Parameters

e Moment equations can be written only in special cases.

e Densities (distributions) contain much more information than first two
moments.

e Using the Chemical Master Equation, we propose to use density measure-
ments for model identification.

Using Density:
Suppose we measure P at different times: P(tg),P(¢t1),...,P(tny_1)

We can use these to identify unknown network parameters \:

Find X subject to
PFSP _ A()\)PFSP

P (1) = P(to)
PP (4) = P(t1)

PP (ty_1) : P(ty_1)



|dentification of lac Induction
\ 0
[PTGoyurT—® IPTGyN —PT

Lacl

I lacI Promoter J—
lacl lacl

Model

b FL, | ac

Lacl 2L 4 51 =69 4+ 6D PTG

we _ kg
¢ — GFP YT T ¥ afLac)

GFP 25, ¢
PTG = IPTGouT(1 — e ™) 9 unknown parameters!
=Xperiment

e E. coli strain DL5905
e |[nduced with different IPTG concentrations: 5,10, 20, 40, 100 uM
e Induction times: 0, 1, 2, 3, 4, 5 hours before flow cytometry




|dentified b =17x1070s70 kg =10x107" s n=21
= t 50 =31x104N1s71 6V =50%x1072 (uM-N)~1s71 o =1.3x 104 N~"
arameters

r=28x10"2s"! uarp = 220 AU ogrp = 390 AU

O hr 3 hr 4 hr 5 hr

2 10" 10° 10 10" 10 10°

10

Model

5 uM
|dentified Model —_—
vS. Experiment - 10 pM —

Experiment

20 uM

40 uM

Model
Predictions

100 M

B. Munsky, B. Trinh, M. Khammash, Nature Molecular Systems Biology, in press.
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Conclusions

¢ Fluctuations may be very important
* Cell variability
* Cell fate decisions
® Some tools are available
* Monte Carlo simulations (SSA and variants)
* Moment approximation methods
* Linear noise approximation (Van Kampen)
* Finite State Projection
e Cellular noise reveals network parameters and enables model identification
e Stationary moments are not sufficient for full identifiability
* Small number of transient measurements of noise is sufficient for identifiability

* Finite State Projection allows the use of master equation solution for
iIdentification

* Cellular noise (process noise) vs. measurement noise (output noise)
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