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Stochastic Influences on Phenotype

Fingerprints of identical twins Cc, the first cloned cat and her genetic mother

variability in gene expression

gen ..gen gengen

J. Raser and E. O’Shea,  Science, 1995.  J. Raser and E. O’Shea,  Science, 1995.  

Piliated Unpiliated
Elowitz et al, Science 2002



Modeling Gene Expression

Deterministic model
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Modeling Gene Expression

• Probability a single mRNA is transcribed in
time dt is krdt.

• Probability a single mRNA is degraded in
time dt is (#mRNA) · γrdt

Stochastic model
γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

...



Fluctuations at Small Copy Numbers
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Fluctuations at Small Copy Numbers

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Cv = coefficient of variation =
standard deviation

mean

(mRNA)

(protein)



ks reduced by 50%

Mass-Action Models Are Inadequate

•  Stochastic mean value different from deterministic steady state
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000
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Formulation of Stochastic Chemical Kinetics

Reaction volume=Ω

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region dΩ is
given by dΩ

Ω .

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature T . The velocity of a
molecule is determined according to a Boltzman distribution:

fvx(v) = fvy(v) = fvz(v) =

�
m

2πkBT
e
− m

2kBT v2



• (M-reactions) The system’s state

can change through any one of

M reaction: Rµ : µ ∈ {1,2, . . . , M}..

• (State transition) An Rµ re-

action causes a state transition

from x to x + sµ.

s1 =

(

1

0

)

; s2 =

(

0

−1

)

; s3 =

(

−1

0

)

1

2 3 4

56

7

8

p
o
p
u
la

ti
o
n

o
f

S
2

population of S1

S1 + S2 → S1

φ → S1

S1 → φR3

R2

R1Example:

Stoichiometry matrix:

S =
[

s1 s2 . . . sM

]

Population: X(t) = [X1(t), . . . , XN(t)]T (integer r.v.)

• (Transition Probability) Probability that Rµ reaction will occur
in the next dt time units is: wµ(x)dt

Example: w1(x) = c1; w2(x) = c2 · x1x2; w3(x) = c3x1;



Yk[·] are independent unit Poisson

p(x, t) := prob(X(t) = x)

Characterizing X(t)

The Chemical Master Equation

dp(x, t)

dt
= −p(x, t)

�

k

wk(x) +
�

k

p(x− sk, t)wk(x)

Sample Path Representation:

X(t) is Continuous-time discrete-state Markov Chain

X(t) = X(0) +
M�

k=1
skYk

�� t

0
wk(X(s))ds

�

(Forward Kolmogorov Equation)



Define XΩ
(t) =

X(t)
Ω

.

Question: How does XΩ
(t) relate to Φ(t)?

 From Stochastic to Deterministic

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
Ω→∞

sup
s≤t

���XΩ(s)−Φ(s)
��� = 0 a.s.



Simulation and Analysis Tools

• Sample Paths Computations
• Moment Computation
• SDE Approximation
• Density Computations



1. Sample Paths Computation

τi is the time to the next firing of reaction Ri

We define two new RVs:

τ = min
i

{τi} (Time to the next reaction)

µ = argmin
i

{τi} (Index of the next reaction)

Fact 1: τ is exponentially distributed with parameter
�

i
wi

To each of the reactions {R1, . . . , RM} we associate a RV τi:

Fact 2: P(µ = k) =
wk�

i
wi

Fact 0: τi is exponentially distributed with parameter wi

Gillespie’s Stochastic Simulation Algorithm:



• Step 3 Update time: t← t + τ . Update state: x← x + sµ.

• Step 0 Initialize time t and state population x

r2 ∈ U([0,1])

time (s)

• Step 2 Draw a sample µ from the distribution of µ

1

0

1 2 3 4 5
reaction index

Cumulative distribution of µ
1

0

Stochastic Simulation Algorithm

(w1 + w2)/
�

k wk

w1/
�

k wk

(w1 + w2 + w3 + w4)/
�

k wk
(w1 + w2 + w3)/

�
k wk

µ

r1 ∈ U([0,1])

Cumulative distribution of τ : F (t) = 1− exp(−
�

k
wkt)

τ = 1�
k wk

log 1
1−r1

• Step 1 Draw a sample τ from the distribution of τ



Let w(x) = [w1(x), . . . , wM(x)]T be the vector of propensity functions

• Affine propensity. Closed moment equations.

• Quadratic propensity. Not generally closed.

– Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)

– Derivative Matching (Singh, Hespanha)

2. Moment Computations

dE[X]

dt
= S E[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[XwT (X)]ST + S diag(E[w(X)]) ST

Moment Dynamics 



These are linear ordinary differential equations and can be easily solved!

Affine Propensity

Suppose the propensity function is affine:

w(x) = Wx + w0, (W is N ×N , w0 is N × 1)

Then E[w(X)] = WE[X]+w0, and E[w(X)XT ] = WE[XXT ]+w0E[XT ].

This gives us the moment equations:

d

dt
E[X] = SWE[X] + Sw0 First Moment

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)S

T

+ Sw0E[XT ] + E[X]wT
0ST Second Moment



X1(t) is # of mRNA; X2(t) is # of protein

W w0

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Application to Gene Expression
Reactants

R1 : φ −→ mRNA

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

�
1 −1 0 0
0 0 1 −1

�

w(X) =





kr

γrX1

kpX1

γpX2




=





0 0
γr 0
kp 0
0 γp





�
X1

X2

�

+





kr

0
0
0





Stoichiometry and Propensity

kr

γr

kp

γp



A = SW =

�
−γr 0
kp −γp

�

, Sw0 =

�
kr

0

�
Steady-State Moments

Steady-State Covariance

X̄ = −A−1Sw0 =





kr
γr

kpkr
γpγr





Σ̄ =





kr
γr

kpkr
γr(γr+γp)

kpkr
γr(γr+γp)

kpkr
γpγr

(1 + kp
γr+γp

)





BBT = S diag(WX̄ + w0)ST =




2kr 0

0 2kpkr
γr





The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.



where dV (t) = A(t)V (t)dt + B(t)dWt

Write XΩ = Φ0(t) + 1√
Ω

V Ω where Φ0(t) solves the deterministic RRE

dΦ

dt
= Sf(Φ)

Linear Noise Approximation: XΩ(t) ≈ Φ(t) + 1√
Ω

V (t)

3. SDE Approximation

Let XΩ(t) := X(t)
Ω

Linear Noise Approximation

V Ω(t)→ V (t) as Ω→∞,

A(t) =
d[Sf(Φ)]

dΦ
(Φ0(t)), B(t) := S

�
diag[f(Φ0(t))]



E[X(t)] = ΩΦ̄

Linear Noise Approximation: Stationary Case

Let Σ̄ be the steady-state covariance matrix of
√

Ω · V (t). Then

AΣ̄ + Σ̄AT + ΩBBT = 0

X(t) ≈ ΩΦ̄ +
√

ΩV (t)

Multiplying XΩ(t) ≈ Φ̄ + 1√
Ω

V (t) by Ω, we get

zero mean
stochastic

deterministic



ω (white gaussian noise)

+
Ωφ̄ (mean)

Ẏ = AY +
√

ΩB ω

Y (t) =
√

ΩV (t)

X(t)



4. Density Computation

Form the probability density state vector                                   :

The Chemical Master Equation (CME):

 can now be written in matrix form:



The Finite State Projection Approach



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen



The Finite State Projection Approach

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)



The Finite State Projection Approach

• Only transitions into removed 
states are retained

• A  finite subset is appropriately 
chosen

• The remaining (infinite) states are 
projected onto a single state (red)

The projected system can be solved exactly!



Finite Projection Bounds

Munsky B. and Khammash M., Journal of Chemical Physics, 2006

Theorem [Projection Error Bounds] Consider any Markov
process described by the Forward Kolmogorov Equation:

Ṗ(XJ; t) = A · P(XJ; t).

If for an indexing vector J: 1T exp(AJT )P(XJ; 0) ≥ 1− �, then
�����

�
P(XJ; t)
P(XJ �; t)

�

−
�
exp(AJt)P(XJ; 0)

0

������
1

< � t ∈ [0, T ]



Applications of FSP

• Feedback Analysis
• Synthetic Switch Analysis
• Epigenetic Switch Analysis
• System Identification



Variance

µ∗
p

Protein variance is always smaller with negative feedback!

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

�
b

1 + η
+ 1

�

µ∗
p

no feedback

Application: Noise Attenuation through Feedback

< 1

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

µ∗
p

feedback

�
1− φ

1 + bφ
·

b

1 + η
+ 1

�

µ∗p

where φ =
k1

γp
, b =

kp

γr
, η =

γp

γr
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v inhibits the production of u:

u inhibits the production of v:

u and v degrade exponentially:

a1(u, v) =
α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]

s1

s2

Promoters1

Promoter

Genes1

Genes2 s2

v

u

Two repressors, u and v.

α1 = 50

α2 = 16

β = 2.5

γ = 1
u(0) = v(0) = 0

Gardner, et al., Nature 403, 339-342 (2000)

Analysis of Stochastic Switchs



Using Noise to Identify Model Parameters



Why use noise?

• Noise provides an excitation source for the network dynamics

• Resulting distributions of proteins can be measured

• Such distributions provide a lot of information about the dynamics

• Can they be used to identify model parameters?

• Noise has been used to discriminate among competing models
Dunlop et. al (2008). Nature Genetics. Regulatory activity revealed by dynamic correlations in gene expression noise.
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Can one identify the parameters λ = {k1, γ1, k2, γ2, k21} from measurements
of the moments v(t)?

Identification from Moment Information

k2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y

Identifiability

k1 − k12 · y

y



Identifying Using Steady-State Moments

k2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y Can the stationary distribution be used to identify
all the parameters?

Full Identifiability with Stationary Moments 

k1 − k12 · y

Impossible!



A =
1
τ

log(G)

Suppose vj := v(tj) has been measured at equally
separated points in time {t0, t1, . . . , tm}

Identifiability from Transient Time-Measurements

�
I
0

�

Multiple Measurementsk2

γ2

x
φ

φ

DNA

mRNA

protein

γ1

y

Identifiability with Multiple Moment Measurements
For m = 6 the model parameters are identifiable.

k1 − k12 · y



Identification with Two Measurements

γ = − 1
2τ

log
�

σ2
1 − µ1

σ2
0 − µ0

�

Suppose the mean and variance are known at two times t0 < t1 <∞,
and define (µ0, σ0) := (µ(t0), σ(t0)) and (µ1, σ1) := (µ(t1), σ(t1)).

Then the transcription parameters are identifiable, and

k = γ
µ1 − exp(−γτ)µ0

1− exp(−γτ)
.

Identifiability of Transcription Parameters

(τ := t1 − t0)

φ
x

DNA

mRNA

k

γ

DNA

k2

γ2

x
φ

φ

mRNA

protein

γ1

k1

y

Identifiability of Transcription & Translation 
Parameters

Aλv1 = AλeAλτv0 − (I − eAλτ )b

• Given v(t0) and v(t1), there is strong theoretical and nu-
merical evidence that unique identifiability of all parameters
k1, k2, γ1, γ2 is always possible.

• An analytic expression exists for finding the parameters.



...

PFSP (t0) = P(t0)
ṖFSP = A(λ)PFSP

PFSP (t1) = P(t1)

PFSP (tN−1) = P(tN−1)

subject toFind λ

Suppose we measure P at different times: P(t0),P(t1), . . . ,P(tN−1)

We can use these to identify unknown network parameters λ:

Using Densities to Identify Network Parameters

Using Density:

• Moment equations can be written only in special cases.

• Densities (distributions) contain much more information than first two
moments.

• Using the Chemical Master Equation, we propose to use density measure-
ments for model identification.
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Identification of lac Induction 

• E. coli strain DL5905
• Induced with different IPTG concentrations: 5,10, 20, 40, 100 uM
• Induction times: 0, 1, 2, 3, 4, 5 hours before flow cytometry

IPTGIN = IPTGOUT(1− e−rt
)

φ
kL−−→ LacI

GFP
δG−−→ φ

LacI
δL−→ φ

φ
wG−−→ GFP wG =

kG

1 + α[LacI]η
,

δL = δ(0)L + δ(1)L [IPTG]IN

Model

Experiment
9 unknown parameters!



Model 
Predictions 
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Identified Model 
vs. Experiment

Model

Experiment

Furthermore, since wG is a nonlinear function of LacI, there is no known analytical expression
for the statistical moments of GFP. Instead, we use a new method, called Finite State Projec-
tion (FSP), for identifying the unknown parameters based on their probability densities (see
Methods). In the identification routine, a parameter search is conducted to find parameter sets
such that the total predicted fluorescence distribution is as close as possible to the measured
distribution in a least squares sense for all time points and IPTG levels.

Fig. 3B shows that the identified model results match the experimentally measured distri-
butions exceptionally well. However, with the full set of ten unknowns in Λ, this identification
is not unique, and we found multiple parameter sets which provide equally good fits. However,
if we utilize additional information about the system, it is possible to reduce the the uncertainty
of the identification. In particular, if we assume that loss of GFP is due solely to dilution, we
can specify the rate δG = 3.8 × 10−4N−1s−1, corresponding to a half life of thirty minutes.
The remaining seven parameters can then be identified as:





kL = 1.7× 10−3 s−1 kG = 1.0× 10−1 s−1 η = 2.1
δ(0)
L = 3.1× 10−4 N−1s−1 δ(1)

L = 5.0× 10−2 (µM · N)−1s−1 α = 1.3× 104 N−η

r = 2.8× 10−5 s−1 µGFP = 220 AU σGFP = 390 AU




 ,

where N refers to molecule number.

Since the assumed model represents a simplified description of multiple events (folding dy-
namics, elongation, spatial motion, etc...), these parameters are best viewed as empirical mea-
surements in the context of the assumed model. Still, it is possible to make some comparisons
between the identified parameters and previous analyses. First, the production and degradation
rates of LacI yield a mean number of kL/γ(0)

L ≈ 5 molecules per cell at steady state in the
absence of IPTG, on the same magnitude of wild-type levels of about ten per cell. Second, the
level of LacI required for half occupancy of the lac operon is [LacI]1/2 = (1/α)1/η = 0.012
which compares well to values 0.006-0.6 molecules (10−11 − 10−9 M, Oehler et al., 1990).
Third, a Hill coefficient of 2.1 is reasonable considering that LacI binds to the operon as a
tetramer. Finally, the degradation rate LacI, δ(0)

L is close to the dilution rate of 3.8× 10−4, re-
flecting the high stability of that protein. In addition to comparing the parameters to values in
the literature, we have used the parameter set identified from 4, 10, and 20 µM IPTG induction
to predict the fluorescence under 40µM IPTG. Fig. 3C shows that these predictions match the
subsequent experimental measurements very well despite the vastly different shapes observed
at the high induction levels.

With single cell experimental techniques such as flow cytometry, it has become possible
to efficiently measure the fluctuations in cellular species. When properly extracted and pro-
cessed with rapidly improving computational tools, these measurements contain sufficiently
rich information as to enable the unique identification of parameters. In principle, this can
be accomplished when accurate distributions are measured at only two distinct time points.
More time points are needed if the distributions are poorly measured, but the idea remains the
same. In this study we have used experimental measurements of cell variability to identify
the parameters of candidate models, and we have shown that noise and transient dynamics are
important to this effort. It is easy to envision the next iterative step in the scientific process,
where one will use these identified models and design the next set of experiments to improve
the identification. Hence, the proposed exploitation of single cell measurements and stochastic
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Conclusions

• Fluctuations may be very important

• Cell variability

• Cell fate decisions

• Some tools are available

• Monte Carlo simulations (SSA and variants)

• Moment approximation methods

• Linear noise approximation (Van Kampen)

• Finite State Projection 

• Cellular noise reveals network parameters and enables model identification

• Stationary moments are not sufficient for full identifiability

• Small number of transient measurements of noise is sufficient for identifiability

• Finite State Projection allows the use of master equation solution for 
identification

• Cellular noise (process noise) vs. measurement noise (output noise)
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