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Example: Chemotaxis
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http://www.genomics.princeton.edu/ryulab

Rao, Kirby and Arkin
PLoS Biology, 2004

Sensing

Actuation

Computation

Implements key principles of feedback
• Dynamics allow exploration, gradient ascent
• Robust with respect to nutrient levels

(adaptation via methylation of receptors)

Can we do better?
• Make use of modular sensors and actuators
• Modify dynamics to provide different types of behavior, robustness properties, ...
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Design of Biomolecular Feedback Systems
I. Biological circuit design (synthetic biology)

II. System Identification in Cells
• Regulatory activity revealed by dynamic 

correlations in gene expression noise (Mary 
Dunlop [UC Berkeley/U. Vermont])

• Joint work with Michael Elowitz

III. Robustness to Uncertainty
• In vitro rate regulators (Elisa Franco, Fei Chen)
• Joint work with Erik Winfree

IV. Design of Dynamics
• Using time-delays to tune in vivo oscillators 

(Johan Ugander, Arthur Prindle)

V. Control Design (?)
• Some thoughts on a “framework” for design of 

biochemical feedback systems
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Represilator (Elowitz & Leibler)
• Ring oscillator with three repressors in a cycle
• Provides oscillations at frequency comparable 

to cell cycle

Genetic Switch (Collins and others)
• Interconnect two genes via cross-repression
• Resulting circuit has two states: “(1,0)”, “(0,1)”
• Can analyze robustness, speed of response

Biological Circuit Design (Synthetic Biology)
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Modular Synthetic Biology

Synchronization of 
a repressilator, IAP ‘03

7 Jan

13 Jan

Elowitz and Lieber, 2000

20 Jan
28 Jan

MIT Bio-Bricks program

Long term goals
 Better understanding of biological function
 New devices for interfacing with biological systems (diagnosis, medication)
 Novel biological processes: biofuels production, bio-remediation

State of the Art
 DNA synthesis: < $1 per base pair (simple circuit: 5000 bp), 6-10 weeks delivery time
 Alternative: manual cloning to put together existing components (eg, bio-bricks)
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Toward a Control Theory for Synthetic Biology
Differences from traditional systems
• Complexity - biological systems are much more 

complicated than engineered systems
• Communications - signal representations are very 

different (spikes, proteins, etc)
• Uncertainty - very large uncertainty in components; 

don’t match current tools
• Evolvability - mutation, selection, etc

(Engineered) Modularity would be very useful
• To build complex systems, we need to be able to 

isolate subsystems (probably)
• Biobricks: modularity at DNA + device level
• Retroactivity (DDV et al): candidate methods for 

minimizing effects of loading by downstream devices
Stochasticity and robustness are critical
• Program time-evolving distributions to achieve 

desired function
• Make use of heterogeneous redundancy to 

provide robustness (?)
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Del Vecchio et al,
Mol Sys Bio, 2008

parts.mit.edu
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Noise in cells
• Experiments by Elowitz, Levine, Siggia, 

Swain.  Science 2002
• Put RFP and GFP under identical

promoters; should get yellow
• Results: get range of colors

Extrinsic Noise: 
• global to a single cell, but varies from 

one cell to the next (e.g. cell volume, 
plasmid copy number)

Intrinsic Noise: 
• inherent stochasticity in gene expression

 (e.g. what order reactions occur in)

Cell Noise (Elowitz et al, 2002)
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+    =

ẋi = E(t) · fi(xi, Ii(t))
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Traditional systems identification
• Engineering: forced response.  Difficult to do in in vivo (eg, sinusoids are tricky)
• Biology: gene knockouts; steady state measurements using gene arrays

Idea: use noise as a forcing 
function
• Steady state distributions 

are not enough if extrinsic 
noise is present

• Need to use correlation data
instead

System Identification Using Cell Noise
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System ID of a Synthetic Circuit (Dunlop, Elowitz & M)

E. coli

Chromosome
(4,600,000 base pairs)

1 copy per cell

Plasmid
(7,500 base pairs)

~10 copies per cell

Results to date
• Synthetic circuit 

demonstrates viability 
of approach

• Implemented on 
natural circuit (using 
promoter fusion)
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System ID of an in vivo circuit
Galactose regulation in E. coli
• GalE regulated by CRP via a 

feedforward loop
• GalR represses feedforward loop 

when fucose is present
• Promoter fusions measure GalS 

and GalE concentrations

System ID shows FFL is not active
• Addition of fucose shows no 

change in correlations => GalS is 
not actively regulating GalE

Hypothesis: GalR repression 
dominant
• If repression by GalR is large, GalS 

is always “off” => no connection
• Removal of GalR recovers 

expected correlations
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In Vitro Rate Regulator (Franco, Winfree & M)
Idea for a circuit: produce two chemicals at same rates
• Common operation for metabolic networks - maintain stoichiometry
• Implemented using in vitro technology (test tubes instead of cells)

Molecular programming for in vitro systems
• Exploit Watson-Crick base pair binding (A-T, C-G) 
• Can “compile” functional specifications into RNA and DNA sequences
• Circuits are biocompatible ⇒ some hope of embedding into cells
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Rate Regulator Results

12

T1 > T2 T1 = T2

T1 > T2

No regulation

Ideal
regulation

[R1]

[R2]

In vitro experiments
• Add templates + 

enzymes to test tube
• Use fluorophors to 

measure amount of 
repression

Rate regulator functions 
correctly
• When T1 is high, get 

more repression of T1
(to bring R1, R2 into 
balance)

• Can also use cross 
activation

Next steps
• Loading effects
• Sensing/actuation
• Integral feedback (Fei)

1 2 3 4 5 6 7 8

50

100

nM

Hours
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Effects of loading

Modeling approach: retroactivity 
(Del Vecchio and Sontag, 2008)
• Keep track of how much down-

stream load affects circuit

• Use “insulator” to isolate

Improving Modularity
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[Load] = 1/5 [T21]
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Numerical simulation, MATLAB
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Improving the Performance of Oscillators

14

Ugander, Dunlop & M, ACC 07

Toggelator

• Coupled oscillators
• Add additional “delay” (ACi)
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Improving Oscillator Performance by Adding Delay
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Reduced Order Analysis
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Curent work: in vivo experiments (Ben Prindle)
• Added delay elements to repressilator
• Related experiments: “A fast, robust and 

tunable synthetic gene oscillator”, Stricker et al (2008).
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Control Theory for Biological Systems
What’s different about biological systems
• Complexity - biological systems are much 

more complicated than engineered systems

• Communications - signal representations are 
very different (spikes, proteins, etc)

• Uncertainty - very large uncertainty in 
components; don’t match current tools

• Evolvability - mutation, selection, etc

Potential application areas for control tools
• System ID - what are the appropriate 

component abstractions and models?

• Analysis - what are key biological feedback 
mechanisms that lead to robust behavior?

• Design - how to we (re-)design biological 
systems to provided desired function?

• Fundamental limits - what are the limits of 
performance and robustness for a given 
biological network topology?

Rao, Kirby and Arkin
PLoS Biology, 2004
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Design of Biomolecular Feedback Systems
Design the easy parts
• Interconnection matrix 
• Time delay matrix

Design tools exist for 
pairwise combinations
• Linear + uncertain = 

robust control theory
• Linear + nonlinear = 

describing functions
• Linear + network = 

formation stabilization
• Linear + delay = 

Floquet analysis

18

Open questions
• What is the class of feedback compensators we can obtain using L and τ ?
• How do we specify robustness and performance in highly stochastic settings?
• Can feedback be used to design robust dynamics that implements useful functionality?
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Summary and Conclusions
Initial steps in biological circuit design w/ feedback
• System ID - determine active network structure, in vivo
• Feedback circuits - rate regulation, modularity
• Design of dynamics using programmable time delays
• Networked control for biological systems

Next steps: Molecular Programming Project (MPP)
• 5 year goal: create the abstractions, languages and 

compilers for systematic design of molecular programs
• Explore applications in self-assembly, bio-technology
• Winfree (PI), Bruck, Klavins, M, Pierce, Rothemund

Reading: 
• Regulatory activity revealed by dynamic correlations in gene 

expression noise.  MJ Dunlop, RS Cox, JH Levine, RM 
Murray, MB Elowitz.  Nature Genetics, 40:1493-1498, 2008

• Design and performance of in vitro transcription rate 
regulatory circuit.  E Franco, RM Murray, CDC 2008 (+2009)

• Stochastic Sensitivity Analysis of Genetic Regulatory 
Networks, J. Ugander, MS thesis, 2008
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