

Feedback and Control in Biological Circuit Design

Richard M. Murray Control and Dynamical Systems California Institute of Technology

Mary Dunlop (ME) Elisa Franco (CDS) Johan Ugander (Lund) Dionysios Barmpoutis (CNS) Ophelia Venturelli (BMB)

Design of Biomolecular Feedback Systems

I. Biological circuit design (synthetic biology)

II. System Identification in Cells

- Regulatory activity revealed by dynamic correlations in gene expression noise (Mary Dunlop [UC Berkeley/U. Vermont])
- Joint work with Michael Elowitz

III. Robustness to Uncertainty

- In vitro rate regulators (Elisa Franco, Fei Chen)
- Joint work with Erik Winfree

IV. Design of Dynamics

 Using time-delays to tune *in vivo* oscillators (Johan Ugander, Arthur Prindle)

V. Control Design (?)

 Some thoughts on a "framework" for design of biochemical feedback systems

Biological Circuit Design (Synthetic Biology)

Represilator (Elowitz & Leibler)

- Ring oscillator with three repressors in a cycle
- Provides oscillations at frequency comparable to cell cycle

Genetic Switch (Collins and others)

- Interconnect two genes via cross-repression
- Resulting circuit has two states: "(1,0)", "(0,1)"
- Can analyze robustness, speed of response

Modular Synthetic Biology

- Better understanding of biological function
- New devices for interfacing with biological systems (diagnosis, medication)
- Novel biological processes: biofuels production, bio-remediation

State of the Art

- DNA synthesis: < \$1 per base pair (simple circuit: 5000 bp), 6-10 weeks delivery time
- Alternative: manual cloning to put together existing components (eg, bio-bricks)

Toward a Control Theory for Synthetic Biology

Differences from traditional systems

- Complexity biological systems are much more complicated than engineered systems
- Communications signal representations are very different (spikes, proteins, etc)
- Uncertainty very large uncertainty in components; don't match current tools
- Evolvability mutation, selection, etc

(Engineered) Modularity would be very useful

- To build complex systems, we need to be able to isolate subsystems (probably)
- Biobricks: modularity at DNA + device level
- Retroactivity (DDV et al): candidate methods for minimizing effects of loading by downstream devices

Stochasticity and robustness are critical

- Program time-evolving distributions to achieve desired function
- Make use of heterogeneous redundancy to provide robustness (?)

Cell Noise (Elowitz et al, 2002)

Noise in cells

- Experiments by Elowitz, Levine, Siggia, Swain. *Science* 2002
- Put RFP and GFP under identical promoters; *should* get yellow
- Results: get range of colors

Extrinsic Noise:

 global to a single cell, but varies from one cell to the next (e.g. cell volume, plasmid copy number)

Intrinsic Noise:

• inherent stochasticity in gene expression (e.g. what order reactions occur in)

$$\dot{x}_i = E(t) \cdot f_i(x_i, I_i(t))$$

System Identification Using Cell Noise

Traditional systems identification

- Engineering: forced response. Difficult to do in in vivo (eg, sinusoids are tricky)
- Biology: gene knockouts; steady state measurements using gene arrays

System ID of a Synthetic Circuit (Dunlop, Elowitz & M)

In Vitro Rate Regulator (Franco, Winfree & M)

Idea for a circuit: produce two chemicals at same rates

- Common operation for metabolic networks maintain stoichiometry
- Implemented using *in vitro* technology (test tubes instead of cells)

Molecular programming for in vitro systems

- Exploit Watson-Crick base pair binding (A-T, C-G)
- Can "compile" functional specifications into RNA and DNA sequences
- Circuits are biocompatible ⇒ some hope of embedding into cells

Rate Regulator Results

In vitro experiments

- Add templates + enzymes to test tube
- Use fluorophors to measure amount of repression

Rate regulator functions correctly

- When T1 is high, get more repression of T1 (to bring R1, R2 into balance)
- Can also use cross activation

Next steps

- Loading effects
- Sensing/actuation
- Integral feedback (Fei)

Improving the Performance of Oscillators

Improving Oscillator Performance by Adding Delay

15

Richard M. Murray, Caltech CDS

Control Theory for Biological Systems

What's different about biological systems

- *Complexity* biological systems are *much* more complicated than engineered systems
- Communications signal representations are very different (spikes, proteins, etc)
- Uncertainty very large uncertainty in components; don't match current tools
- Evolvability mutation, selection, etc

Potential application areas for control tools

- System ID what are the appropriate component abstractions and models?
- *Analysis* what are key biological feedback mechanisms that lead to robust behavior?
- *Design* how to we (re-)design biological systems to provided desired function?
- *Fundamental limits* what are the limits of performance and robustness for a given biological network topology?

Design of Biomolecular Feedback Systems

Design the easy parts

- Interconnection matrix
- Time delay matrix

Design tools exist for pairwise combinations

- Linear + uncertain = robust control theory
- Linear + nonlinear = describing functions
- Linear + network = formation stabilization
- Linear + delay = Floquet analysis

Open questions

- What is the class of feedback compensators we can obtain using L and τ ?
- How do we specify robustness and performance in highly stochastic settings?
- Can feedback be used to design robust dynamics that implements useful functionality?

Summary and Conclusions

Initial steps in biological circuit design w/ feedback

- System ID determine active network structure, in vivo
- Feedback circuits rate regulation, modularity
- Design of dynamics using programmable time delays
- Networked control for biological systems

Next steps: Molecular Programming Project (MPP)

- 5 year goal: create the abstractions, languages and compilers for systematic design of molecular programs
- Explore applications in self-assembly, bio-technology
- Winfree (PI), Bruck, Klavins, M, Pierce, Rothemund

Reading:

- Regulatory activity revealed by dynamic correlations in gene expression noise. MJ Dunlop, RS Cox, JH Levine, RM Murray, MB Elowitz. *Nature Genetics*, 40:1493-1498, 2008
- Design and performance of in vitro transcription rate regulatory circuit. E Franco, RM Murray, CDC 2008 (+2009)
- Stochastic Sensitivity Analysis of Genetic Regulatory Networks, J. Ugander, MS thesis, 2008

