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Divide the stability analysis into two layers:

1) Network layer:   Represent components with I/O properties, such as

passivity, as abstractions of their detailed dynamic models. 

Determine which I/O properties are compatible with the network structure:

(Moylan and Hill, 1978), (Vidyasagar, 1981), (Megretski & Rantzer, 1997)

Network layer

(Moylan and Hill, 1978), (Vidyasagar, 1981), (Megretski & Rantzer, 1997)

Component layer

compatible I/O property

Component layer

2) Component layer:   Verify the relevant I/O properties without relying on

further knowledge of the network.
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Overview of Passivity

The dynamic system       is called passive if it admits a “storage function”e dy a c sys e s ca ed pass e ad s a s o age u c o

s.t.                    .   Output strictly passive if 

Example: Stable LTI systems with phase restrictions: a p e S ab e sys e s p ase es c o s
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Example: The Euler-Lagrange system:

M(q)q̈ + C(q, q̇)q̇ + dP
d = τM(q)q + C(q, q)q + dq τ

is passive with                ,                ,u = τ y = q̇ S(q, q̇) = 1
2 q̇
TM(q)q̇ + P (q)



Cyclic Biochemical Reaction Networks

Cellular Signaling:  Kholodenko (2000, 2006); Shvartsman et al. (2001)

Figure: 
Kholodenko (2006)

Gene Regulation:  Jacob & Monod (‘61), Goodwin (‘65), Elowitz & Leibler (2000)

Substrate
DNA mRNA Enzyme

Product

Metabolic Pathways: Morales (’67), Dibrov et al. (‘82), Stephanopoulos et al. (‘98)



Secant Criterion for Local Stability: (Tyson & Othmer, 1978; Thron, 1991)

…
-

The cyclic interconnection of linear blocks

--- (secant)
is asymptotically stable if:

If each block is output strictly passive:

Extension to Nonlinear Blocks via Passivity:  (Arcak and Sontag, 2006)

with pos. def.       and if (secant) holds then global stability with Lyap. function:Sip ( ) g y y pi



This approach divides analysis/design procedures into two layers:

√ 1) Network layer:   Represent components with I/O properties, such as

passivity, as abstractions of their detailed dynamic models. √
Determine which I/O properties are compatible with network structure:

(Moylan and Hill, 1978),  (Vidyasagar, 1981), (Megretski & Rantzer, 1997)

Network layer

Component layer

compatible I/O property

Component layer

2) Component layer:   Verify or assign the relevant I/O properties

without relying on further knowledge of the network.



Component  Analysis of the Cyclic Reaction Network:

hi(·) : increasing functions

Task:  Verify that each subsystem

ẋ = f (x ) + g (x )u

Hi :

hi( ) g

xi = fi(xi) + gi(xi)ui
yi = hi(xi)

ui − u
∗
i

yi − y
∗
i

is output strictly passive relative to fixed point         and calculate gain γi

Challenge:  The network fixed point        and consequently         and

x∗i
x∗ u∗i y∗i

depend on all other components and are highly uncertain



Equilibrium-Independent Passivity  (Hines, Arcak and Packard, 2009)

Suppose the system:                                                  is such that, for everyẋ = f(x, u) y = h(x, u)

u∗ ∈ U there exists unique         satisfying f(x∗, u∗) = 0x∗

Definition: The system is equilibrium-independent passive if for every

u∗ ∈ U there exists storage function                                          satisfying:Su∗(x) > 0 ∀x 6= x∗g y gu ( ) > 6
∇xSu∗f(x, u) ≤ (u− u∗)T (y − y∗)− 1

γ ky − y∗k2

Necessary &sufficient conditions for EIP of scalar input affine systems:

EIP(    )γ

Necessary &sufficient conditions for EIP of scalar input-affine systems:

ẋ = f(x) + g(x)u y = h(x) g(x) 6= 0

1) i i l i i f ii ( ( ))h( )

y∗ = ky(u∗)

1)                              is a strictly increasing function 

2)  The steady-state map                         satisfies:

sign(g(x))h(x)
Su∗(x) =

0 ≤ k0y(u∗) ≤ γ ∀u∗ ∈ U



Equilibrium-Independent Passivity  (Hines, Arcak and Packard, 2009)

Suppose the system:                                                  is such that, for everyẋ = f(x, u) y = h(x, u)

u∗ ∈ U there exists unique         satisfying f(x∗, u∗) = 0x∗

Definition: The system is equilibrium-independent passive if for every

u∗ ∈ U there exists storage function                                          satisfying:Su∗(x) > 0 ∀x 6= x∗g y gu ( ) > 6
∇xSu∗f(x, u) ≤ (u− u∗)T (y − y∗)− 1

γ ky − y∗k2

Necessary &sufficient conditions for EIP of scalar input affine systems:

EIP(    )γ

Necessary &sufficient conditions for EIP of scalar input-affine systems:

0 ≤ k0y(u∗) ≤ γ ∀u∗ ∈ U
y∗

u∗



Example:  MAPK Cascade with Inhibitory Feedback

Kinase

M1 M1M1
P

Phosphatase

M1
M2 M2

M3 M3P
P

Shvartsman et al (2001):

Phosphatase
Phosphatase

PhosphataseFigure: Kholodenko (2006)

Shvartsman et al. (2001):

 Secant estimate for global asymptotic stability: Secant estimate for global asymptotic stability:

 Small-gain estimate:                   Bifurcation at:



Example:  MAPK Cascade with Inhibitory Feedback

-

H1:

H2:

H3:

k ( )To estimate       , solve for                from: γi kyi(·)

and obtain an upper bound on the slope.  Secant criterion: 



Local vs. Global Secant Criteria

Local secant criterion does not rule out the possibility of periodic orbits. 

Example: φ(x3)

φ0(1) = 7.5 < 8Because                              local secant criterion

guarantees asymptotic stability of x∗ = (1, 1, 1)

An attractive limit cycle exists in addition to       :x∗

x2 x2

x1 x1



From Cyclic to Other Network Structures

(A k d S t 2008) S h b t i EIP( ) d

ẋi = fi(xi) + gi(xi)ui
yi = hi(xi)

γ(Arcak and Sontag, 2008):  Suppose each subsystem is EIP(     ) and a

fixed point        exists for the network.  Then        is asymptotically stable if 

γi

x∗ x∗

is diagonally stable ; that is,                                for some diagonal

Cyclic Structure as a Special Case:

is diagonally stable if and only if



Example:  MAPK Network Topologies in PC-12 Cells (Santos et al., 2007)
R f 1 M k1/2 E k1/2X X X

X1 X2 X3 X1 X2 X3
γ1 γ2γ2γ1

Raf-1             Mek1/2            Erk1/2X1 : X2 : X3 :

γ3

γ4γ4

γ3

(a) When activated with epidermal
growth factors (EGFs)

(b) When activated with neuronal
growth factors (NGFs)

Ea =

⎡⎢⎢⎣
− 1

γ1
0 0 −1

1 − 1
γ2

−1 0

0 1 − 1
γ3

0

⎤⎥⎥⎦ Eb =

⎡⎢⎢⎣
− 1

γ1
0 0 1

1 − 1
γ2

−1 0

0 1 − 1
γ3

0

⎤⎥⎥⎦⎣
γ3

0 1 0 − 1
γ4

⎦ ⎣
γ3

0 1 0 − 1
γ4

⎦
Lemma: is diagonally stable iff:               is diagonally stable iff: Ea Eb

γ1γ2γ4 < 8 γ1γ2γ4 < 1



γ5

x1 x2 x3

γ3

γ2γ1

γ4

γ

(c) Increased connectivity from Raf-1 to Erk1/2 when NGF activation observed 
over a longer period of time⎡⎢ − 1

γ1
0 0 1 0

1 − 1
γ

−1 0 0

⎤⎥
Ec =

⎢⎢⎢⎢⎢⎣
γ2

0 1 − 1
γ3

0 1

0 1 0 − 1
γ4

1

0 0 0 1 − 1
γ5

⎥⎥⎥⎥⎥⎦⎣
γ5

⎦

γ1γ2γ4 + γ4γ5 < 1

Principal submatrix obtained by deleting row-3 and column-3 diagonally stable iff:

γ1γ2γ4 γ4γ5

necessary (but not sufficient) condition for diagonal stability of Ec



( ) ( )Exact diagonal stability region (determined numerically) in               -plane:(γ3, γ4)

γ1 = 1

γ = γ = 0 5γ2 = γ5 = 0.5

γγ4

γ3γ3



Example:  Branched Pathways with Feedback Inhibition
γ4

X X

X3 X4
γ1

γ2
γ3

γ4

X1 X2

X5 X6

γ

γ

γ6γ5

γ7

⎡
− 1

γ1
0 0 −1 0 0 −1
1

⎤Lemma: The matrix 

E =

⎡⎢⎢⎢⎢⎢⎢⎢
1 − 1

γ2
0 0 0 0 0

0 1 − 1
γ3

0 0 0 0

0 0 1 − 1
γ4

0 0 0

1 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎢⎢⎢⎣ 1 0 0 0 −γ5
0 0

0 0 0 0 1 − 1
γ6

0

0 0 0 0 0 1 − 1
γ7

⎥⎥⎥⎦
is diagonally stable if and only if:is diagonally stable if and only if:

γ1γ2γ3γ4 + γ1γ5γ6γ7 < sec(π/4)
4 = 4



˙ f( ) ∈ Rn (R)

Extension to Reaction-Diffusion Systems

x = f(x) x ∈ Rn

∂x
∂t = f(x) +D∇2x on domain Ω with Neumann boundary condition

(R)

(RD)

(J i A k S t 2008 W 2008)

Diffusion-Driven Instability (Turing, 1952): Stability of        in (R) does notx∗

imply stability of the uniform steady-state                    in (RD).x(ξ) ≡ x∗

(upon mild technical conditions) global stability for uniform steady-state in (RD).

(Jovanovic, Arcak, Sontag, 2008;  Wang 2008):  

The diagonal stability test for (R) decomposed into EIP subsystems guarantees

(upon mild technical conditions) global stability for uniform steady state in (RD).  

MAPK Cascade Example with Diffusion: 

x1(ξ, t) x2(ξ, t) x3(ξ, t)



From Stability to Synchronization

Species     in compartment    : i k

ẋi,k = fi(xi,k) + gi(xi,k)ui,k +
X

aij,k(xi,j − xi,k)

diffusive coupling 
btw compartments

identical model in
each compartment

X
j 6=k

j,

Diffusion graph for species    

X X X
a12,3

i

represented with Laplacian:X1

X2

X1

X2

X1

X2

represented with Laplacian:

Lij,k =

½ P
p6=j a

i
j,p j = k

−aij,k j 6= k

X3 X3 X3
Algebraic connectivity:

λi = minkzk=1
zTLiz
zT z

compartment 1 compartment 2 compartment 3
k k z z
z ⊥ 1n



(Scardovi, Arcak and Sontag, 2009):  Replace EIP with “co-coercivity” and

Esync = E − diag{λ1, · · · ,λn}

modify the dissipativity matrix as:

If             is diagonally stable then                                            for each species    Esync xi,k(t)− xi,j(t)→ 0

Example: For cyclic coupling,            is diagonally stable if and only if:Esync

i

Goodwin Oscillator with Diffusion:Goodwin Oscillator with Diffusion: 

m pe

t t tξ ξ ξ



Conclusions

Passivity approach used to extend the classical secant criterion:

 From local, linear models to nonlinear models;

Modified criteria developed for stability and synchronization in the presence of

 From cyclic networks to general interconnection structures.

Remaining problems:

diffusion.

 V if i EIP f hi h d bl k

 Accounting for time delays:

 Verifying EIP for higher order blocks.  

Im

γi
Re

Im

γi
Re
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