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Divide the stability analysis into two layers:

1) Network layer:

Represent components with I/O properties, such as

passivity, as abstractions of their detailed dynamic models.

Determine which I/O properties are compatible with the network structure:

(Moylan and Hill, 1978), (Vidyasagar, 1981), (Megretski & Rantzer, 1997)
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2) Component layer:

Network layer

® compatible 1/O property

Component layer

Verify the relevant I/O properties without relying on

further knowledge of the network.
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Overview of Passivity
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The dynamic system H is called passive if it admits a “storage function”

S(z) >0 st. S < uTy. Output strictly passive if S < fyuTy — ||y||2

Example: Stable LTI systems with phase restrictions:
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Example: The Euler-Lagrange system:
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Output Strictly
Passive
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M(q)§+Clg,d)g+ S =7

is passive with U = T, y =¢q. S(q,q) =

LiT M (q)q + P(q)




Cyclic Biochemical Reaction Networks

Cellular Signaling: Kholodenko (2000, 2006); Shvartsman et al. (2001)

Kinase

Phosphatase

Phosphatase

Figure:
Phosphatase Kh0|0denk0 (2006)

Gene Regulation: Jacob & Monod (‘61), Goodwin ('65), Elowitz & Leibler (2000)

Substrate
DNA —> mRNA — Enzyme —>|
T TREEEs Product

Metabolic Pathways: Morales ('67), Dibrov et al. (‘82), Stephanopoulos et al. ("98)




Secant Criterion for Local Stability: (Tyson & Othmer, 1978; Thron, 1991)

Hq » Ho — .. — Hj, >
The cyclic interconnection of linear blocks H; : 7y, = —y; + v;u;
is asymptotically stable if:
Y1 ..y < sec(m/n)" --- (secant)

Extension to Nonlinear Blocks via Passivity: (Arcak and Sontag, 2006)

If each block 4, » H; — y,; Isoutputstrictly passive:

Si < —lwill? 4+ i ui vi
with pos. def. S, and if (secant) holds then global stability with Lyap. function:
V=3 14d;S;




1) Network layer:

Network layer

® compatible 1/O property
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Component layer

—} 2) Component layer: Verify or assign the relevant I/O properties

without relying on further knowledge of the network.




Component Analysis of the Cyclic Reaction Network:

f1(x1) — g1(z1)hn(zn)
fa(x2) + go(z2)hi(x1)

1

T
In = fn($n)+9n($n)hn—1($n—1)

h;(+) : increasing functions

Task: Verify that each subsystem H. :

filx;) + gi(zi)u; ]

* xz L, — Y

U; — U, —

¢ Y;

is output strictly passive relative to fixed point x:‘ and calculate gain 7y;

Challenge: The network fixed point ™ and consequently uf and yf

depend on all other components and are highly uncertain




Equilibrium-Independent Passivity (Hines, Arcak and Packard, 2009)

Suppose the system: & = f(z,u) y = h(z,u) issuch that, for every

u* €U there exists unique x* satisfying f(z*,u*) =0

Definition: The system is equilibrium-independent passive if for every

u* € U there exists storage function S,.(x) >0 Vz # x* satisfying:
VoSu-f(z,u) < (u—u")"(y—y*) = 2y —v*[>  EIP(7)

Necessary &sufficient conditions for EIP of scalar input-affine systems:

z = f(z)+g(z)u y=nh(z) g(z)#0

1) sign(g(x))h(x) is a strictly increasing function

Su(z) =
f; h(o)—h(w*)d

* g(o)

2) The steady-state map y* = ky(u*) satisfies:

o)

0<k,(u)<y Yu"el

—




Equilibrium-Independent Passivity (Hines, Arcak and Packard, 2009)

Suppose the system: & = f(z,u) y = h(z,u) issuch that, for every

u* €U there exists unique x* satisfying f(z*,u*) =0

Definition: The system is equilibrium-independent passive if for every

u* € U there exists storage function S,.(x) >0 Vz # x* satisfying:
VoSu-f(z,u) < (u—u")"(y—y*) = 2y —v*[>  EIP(7)

Necessary &sufficient conditions for EIP of scalar input-affine systems:

0<k,(u)<vy Yu"el
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Example: MAPK Cascade with Inhibitory Feedback

Kinase

Phosphatase

Phosphatase

Figure: Kholodenko (2006)

Phosphatase

B = — b1z n di(l —xq) v
ci1+x1  e1+(1—x1)1+ kxs

Gy = bz n do(1 — z2) -
cotxp  ex+ (1 —x2)

e — 0373 d3(1 —z3)

3 c3tz3 ezt (1—w3) °

Shvartsman et al. (2001):

by =e1 =c31 =bp=0.1
co = ey =c3 =e3 = 0.01
di =dp=d3=1

b3 = 0.5 ©u=0.3

> Secant estimate for global asymptotic stability: £ < 4.35
> Small-gain estimate: & < 3.9 Bifurcation at: k = 5.1




Example: MAPK Cascade with Inhibitory Feedback

b1 di1(1—x1) v

B o= — +

cit+x1  e1+(1—21)1+ kg

s B boxo 4 do(1 — x5) . * Hq Hy |— Hsj
cot+xx ex+ (1 —2x2) =

iy = — b33 n d3(1l — z3) .
c3+x3  ez+ (1 —x3)
He ) = - A ) = O ) = o
He fae2) == 22 gp(a) = (BT () = 2
Hs faled) =3 ga(ea) = BT ha(an) = -t

To estimate i, solve for kyq; () from:
filzi) + gi(@Dux =0 = z7 = kg (u")

y; = ky;(u") = hi(ka;(u™))
and obtain an upper bound on the slope. Secant criterion: v17273 < 8




Local vs. Global Secant Criteria

Local secant criterion does not rule out the possibility of periodic orbits.

b(z3)

Example:

Because ¢'(1) = 7.5 < 8 local secant criterion
guarantees asymptotic stability of z* = (1,1,1)

An attractive limit cycle exists in addition to ™

t1 = —x1+ ¢(z3)
Tp = —To+ T
r3 = —x3+ X2
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From Cyclic to Other Network Structures

fi(z;) + gi(zi)u;
hi(x;)

(Arcak and Sontag, 2008): Suppose each subsystem is EIP( i) and a

T
Y;

u = Ky

fixed point 2™ exists for the network. Then x™ is asymptotically stable if

1 1
E:K—diag{—,»--,—}
71 Tn

is diagonally stable ; thatis, E' D + DE < 0 for some diagonal D > (

Cyclic Structure as a Special Case:

1y 0 e 1]
1 —1 0
Ecyclic: . /72
: : 0
0

is diagonally stable if and only if Y1 .-.-.-7n < sec(m/n)"




Example: MAPK Network Topologies in PC-12 Cells (Santos et al., 2007)
X :Raf-1 X, : Mek1/2 Xs : Erk1/2

X, 71 |X2 V2 'Xs

(a) When activated with epidermal
growth factors (EGFs)

[ L 0 0 —1
f S | 0
Eq 0 1 — L 0
Y3
0 1 o -+
= Y4

Lemma: [/, is diagonally stable iff:

Y1Y2Ys < 8

71 Y2

X7 Xy X

3

(b) When activated with neuronal

growth factors (NGFs)

[ L 0 0
TR S
_ Y2
By = 0 ——
Y3
0 1 0

E,, is diagonally stable iff:
V17274 < 1




v
A V' ’
3
Y4

(c) Increased connectivity from Raf-1 to Erk1/2 when NGF activation observed
over a longer period of time

e | 0 1 0
Y1
1 -+ -1 0 0
Y2
E.=| 0 1 L 0 1
Y3
o 1 0 -= 1
Y4
0 0 0 J—
B Y5

Principal submatrix obtained by deleting row-3 and column-3 diagonally stable iff:

Y1Y2Va + Y4y < 1

=P necessary (but not sufficient) condition for diagonal stability of F .




Exact diagonal stability region (determined numerically) in (3, v4) -plane:

=1
Yo = V5 = 0.5
2
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Example: Branched Pathways with Feedback Inhibition

e s
5 T KR X
¥ Y6
| PUXs T X
Y7
Lemma: The matrix
'—,yl—l 0 0 —1 0 0 —1
1 -1 0 0 0 0 0
Y2
0 1 —%3 0 0 0 0
E = 0 0 1 —7—14 0 0 0
1 0 0 0o -1 0 0
Y5
0 0 0 0 1 —-LX 0
Y6
0 0 0 0 0  —
L Yr -

is diagonally stable if and only if:
MY2Y3Y4 + V1Y5Y677 < sec(m/4)* = 4




Extension to Reaction-Diffusion Systems
&= f(r) zeR" (R)
9z — f(x) + DV2z on domain Q with Neumann boundary condition (RD)

Diffusion-Driven Instability (Turing, 1952): Stability of ™ in (R) does not
imply stability of the uniform steady-state x(§) = =* in (RD).
(Jovanovic, Arcak, Sontag, 2008; Wang 2008):

The diagonal stability test for (R) decomposed into EIP subsystems guarantees
(upon mild technical conditions) global stability for uniform steady-state in (RD).

MAPK Cascade Example with Diffusion:
3 | |
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From Stability to Synchronization

Species 7 in compartment k:

Tik = fi(Tik)+ gi(@ik)uik + Z a;,k(xz’,j — Ti k)

| v ] k| v J
identical model in diffusive coupling
each compartment btw compartments
-------- . . Diffusion graph for species 2
v v ay3 v , .
X, — X, ’ — X, represented with Laplacian:
| : L — p#j "Ip Y
P LS
X, X, X, Algebraic connectivity:
A N A . 2TL:z
Ai = MiN ;| =1 7

compartment 1 compartment2 compartment 3 z L1y




(Scardovi, Arcak and Sontag, 2009): Replace EIP with “co-coercivity” and

modify the dissipativity matrix as:

Esyne = E —diag{A1, -+, \n}
If Egync is diagonally stable then x; 1 (t) — x; ;(t) — 0 for each species i
Example: For cyclic coupling, Esync is diagonally stable if and only if:

ﬁ L % < sec(m/n)"
Goodwin Oscillator with Diffusion:

S0 = R oW = @
iy

w




Conclusions

Passivity approach used to extend the classical secant criterion:

» From local, linear models to nonlinear models;

» From cyclic networks to general interconnection structures.

Modified criteria developed for stability and synchronization in the presence of

diffusion.
Remaining problems:
» Verifying EIP for higher order blocks.

» Accounting for time delays:
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