Genetic Design Automation: Progress and Future Research Directions

Chris Myers¹, Kevin Jones¹, Nathan Barker², Hiroyuki Kuwahara³, Curtis Madsen¹, Nam Nguyen⁴, Chris Winstead⁵

> ¹University of Utah ²Southern Utah University ³Carnegie Mellon University ⁴University of Texas at Austin ⁵Utah State University

RoSBNet Synthetic Biology Workshop September 16, 2009

Phage λ Virus

Phage λ Decision Circuit

Asynchronous Circuit?

McAdams/Shapiro, Science (1995)

C. Myers et al. (U. of Utah)

Stochastic Circuit?

Stochastic Asynchronous Circuit?

Stochastic Asynchronous Circuit Results

C. Myers et al. (U. of Utah)

Genetic Design Automation

Stochastic Asynchronous Circuit Results

C. Myers et al. (U. of Utah)

Genetic Design Automation

Synthetic Biology

(From "Adventures in Synthetic Biology" - Endy et al.)

Genetic Engineering vs. Synthetic Biology

- Genetic engineering (last 30 years):
 - Recombinant DNA constructing artificial DNA through combinations.
 - Polymerase Chain Reaction (PCR) making many copies of this new DNA.
 - Automated sequencing checking the resulting DNA sequence.
- Synthetic biology adds:
 - Standards create repositories of parts that can be easily composed.
 - Abstraction high-level models to facilitate design.
 - Automated construction separate design from construction.

(source: Drew Endy)

- Standards, abstraction, and automated construction are the cornerstones of *Electronic Design Automation* (EDA).
- EDA facilitates the design of more complex integrated circuits each year.
- Crucial to the success of synthetic biology is an improvement in methods and tools for *Genetic Design Automation* (GDA).
- Experiences with EDA can jump start the development of GDA.

- Registry of standard biological parts used to design synthetic genetic circuits (http://partsregistry.org).
- Adequate characterization of these parts is an ongoing effort.
- *Systems Biology Markup Language* (SBML) has been proposed as a standard representation for the simulation of biological systems.
- Many simulation tools have been developed that accept models in the SBML format (Copasi, Jarnac, CellDesigner, SimBiology, iBioSim, etc.).

Current State of GDA (Abstraction)

- Existing SBML-based GDA tools model biological systems at the molecular level.
- A typical SBML model is composed of a number of chemical *species* (i.e., proteins, genes, etc.) and *reactions* that transform these species.
- This is a very low level representation which is roughly equivalent to the layout level for electronic circuits.
- Designing and simulating genetic circuits at this level of detail is extremely tedious and time-consuming.

Current State of GDA (Automated Construction)

- Several companies have formed that will construct a plasmid from an arbitrary DNA sequence.
- It is still difficult, however, to separate design and construction issues.
- To achieve this, a GDA tool that supports higher-levels of abstraction for modeling, analysis, and design of genetic circuits is essential.

Overview

- This talk describes our research to develop a GDA tool that utilizes abstraction to improve the efficiency of analysis and design.
- The design of a quorum trigger circuit is presented as a case study.

Genetic Circuit Analysis

C. Myers et al. (U. of Utah)

Genetic Circuit Design

Genetic Circuit Construction

Genetic Circuit Model (GCM)

Genetic Circuit Model (GCM)

- Provides a higher level of abstraction than SBML.
- Includes only important species and their influences upon each other.
- GCMs also include structural constructs that allow us to connect GCMs for separate modules through species ports.

A Genetic Not Gate

A Genetic Nor Gate

A Genetic Nand Gate

C. Myers et al. (U. of Utah)

Genetic Design Automation

A Genetic Oscillator

Molecular Representation

C. Myers et al. (U. of Utah)

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

Species

- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Species
- Global parameters (ex. k1=0.1)
- Reactions
 - Reactants
 - Products
 - Modifiers
 - Stoichiometry
 - Reversible
 - Kinetic laws

- Create degradation reactions
- Create open complex formation reactions
- Create dimerization reactions
- Create repression reactions
- Create activation reactions
GCM Example

Degradation Reactions

Open Complex Formation Reactions

C. Myers et al. (U. of Utah)

Dimerization Reactions

C. Myers et al. (U. of Utah)

Repression Reactions

C. Myers et al. (U. of Utah)

Activation Reactions

C. Myers et al. (U. of Utah)

Complete SBML Model

C. Myers et al. (U. of Utah)

Genetic Design Automation

- Uses *ordinary differential equations* (ODE) to represent the system to be analyzed, and it assumes:
 - Molecule counts are high, so concentrations can be continuous variables.
 - Reactions occur continuously and deterministically.
- Genetic circuits have:
 - Small molecule counts which must be considered as discrete variables.
 - Gene expression reactions that occur sporadically.
- ODEs do not capture non-deterministic behavior.

NYTimes: Expressing Our Individuality, the Way E. Coli Do

C. Myers et al. (U. of Utah)

Genetic Design Automation

Rainbow and CC

C. Myers et al. (U. of Utah)

Genetic Design Automation

- To more accurately predict the temporal behavior of genetic circuits, *stochastic chemical kinetics* formalism can be used.
- Use Gillespie's *Stochastic Simulation Algorithm* which tracks the quantities of each molecular species and treats each reaction as a separate random event.
- Only practical for small systems with no major time-scale separations.
- Abstraction is essential for efficient analysis of any realistic system.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a *stochastic asynchronous circuit* (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a *stochastic asynchronous circuit* (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a stochastic asynchronous circuit (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a stochastic asynchronous circuit (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a *stochastic asynchronous circuit* (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a *stochastic asynchronous circuit* (SAC) model.
- Can now utilize Markov chain analysis.

- Begins with a *reaction-based model* in SBML.
- Automatically abstracts this model leveraging the quasi-steady state assumption, whenever possible.
- Encodes chemical species concentrations into Boolean (or n-ary) levels to produce a *stochastic asynchronous circuit* (SAC) model.
- Can now utilize Markov chain analysis.

Dimerization Reduction

C. Myers et al. (U. of Utah)

Dimerization Reduction

Operator Site Reduction (PR)

Operator Site Reduction (PR)

C. Myers et al. (U. of Utah)

Operator Site Reduction (PRE)

Operator Site Reduction (PRE)

Similar Reaction Combination

C. Myers et al. (U. of Utah)

Modifier Constant Propagation

C. Myers et al. (U. of Utah)

Final SBML Model

10 species and 10 reactions reduced to 2 species and 4 reactions

C. Myers et al. (U. of Utah)

GCM Advantages

- Greatly increases the speed of model development and reduces the number of errors in the resulting models.
- Allows efficient exploration of the effects of parameter variation.
- Constrains SBML model such that it can be more easily abstracted resulting in substantial improvement in simulation time.

iBioSim: Genetic Circuit Editor

	illioSim
()	
CiCil.gcm 🖾	
	Main Elements Components
GCM Id: CICII	SBML File:none 😫 Biochemical abstraction: 🗌 Dimerization abstraction: 🗌
List of Promoters:	List of Species
PR	0
PRE	0
Add Promoter Remove Promoter	Edit Promoter (Add Species) (Edit Species) Ust of Parameters:
CI - CII, Promoter PR	Activated production rate (ka), Default, .25
CII -> CL Promoti PRE	Annuation binding equilibrium (Xa). Default, 2003. Basal production rate (kb), Default, 2001. Biodhemical equilibrium (Xb). Default, 05. Degradations rate ridd. Default, 055. Degree of cooperativity (nc). Default, 2 Pergree of Looperativity (nc). Default, 2
	Initial INAP count (nr), Default, 2
	CICILgem 155

Myers et al., Bioinformatics (2009)

C. Myers et al. (U. of Utah)

Genetic Design Automation

iBioSim: SBML Editor

Bibiosim File	East view roots help	• • • • • • • • • • • • • • • • • • •
000	BioSim	
CCL gom	CICILgem (3) CICILxmi (3)	
	Main Elements Definitions/Types Initial Assignments/Rules/C	onstraints/Events
	Model ID: CICII.xml Model Name: Created from CICII.xml	
	List of Compartments: List of Species:	
	04100/F 1.0 C 46410/F 0.0 PR 6410/F 0.0 PR 6410/F 0.0 PR 6410/F 0.0 RNAP 8410/F 0.0 RNAP 98 6410/F 0	
	(Add Compartment) (Remove Compartment) (Edit Compartment) (Add Specie	es (Remove Species) (Edit Species)
	List of Reactions: List of Global Parameters	
	Degradation, Cl	
	Depadation CI R. J.C. 2004Ution, PRL CI R. Jossi J. production, PRL R. production, PR R. repression, Building, PR, CI R. RAVA, PR R. RAVA, PRL R. RAVA, PRL	
	(Add Reaction) (Edit Reaction) (Add Parameter	r) (Remove Parameter) (Edit Parameter)
/Users/myers/nobackup	/Projects / /example / /CICII.gcm	
Saving GCM file as SBML /Users/myers/nobackup	file: /Projects//example//ClCll.xml	
Creating properties file: /Users/myers/nobackup	/Projects//example/sim/CICII.properties	

Myers et al., Bioinformatics (2009)

C. Myers et al. (U. of Utah)

Genetic Design Automation

iBioSim: Analysis Engine

📽 iBioSim File Edi	t View Tools Help	0 🔳 (9.	· (2:48	Wed N
000		BioSim			
esample Im Im CCE.xm	CICIL.gcm 정 CICIL.xml 정 sim 정				
	Simulation Options Abstraction Options Parameter Editor TSD Graph Probability Graph				
		Model File: CICII.sbml			
	Abstraction	None Abstraction Logical Abstraction			
	Simulation Type: 💿 ODE	O Monte Carlo O Markov O SBML O Network O Browser			
		Choose One: Overwrite O Append			
	Possible Simulators/Analyzers	rkf45			
	Description Of Selected Simulator:	Embedded Runge-Kutta-Fehlberg (4, 5) method			
	Time Limit:	2100.0			
	Print Interval	50.0			
	Maximum Time Step:	inf			
	Absolute Error:	1.0E-9			
	Random Seed	314159			
	Runs:	1			
	Simulation ID:				
/Users/myers/nobackup/Proj	ects//example//CICII.gcm				6
Saving GCM file as SBML file: /Users/myers/nobackup/Proj	ects//example//CICII.xml				
Creating properties file: /Users/myers/nobackup/Proj	iects//example/sim/CICII.properties				Ļ
					1

Myers et al., Bioinformatics (2009)

C. Myers et al. (U. of Utah)

ODE Results for the Simple Genetic Oscillator

SSA Results for the Simple Genetic Oscillator

SSA Mean Results for the Simple Genetic Oscillator

C. Myers et al. (U. of Utah)

Marginal Probability Density Evolution

- The SSA predicts random behavior by generating sample paths.
- Species' statistics (mean/stdDev) are found by aggregating these paths.
- Complex systems switch states at numerous random times.
- Averaging of sample paths "washes out" meaningful behavior.
- Instead marginal probability density evolution (MPDE) method can be used to determine "typical" species statistics.

Winstead et al., IWBDA (2009)

Example: Circadian Rhythms

• The VKBL circadian rhythm model from Vilar (2002) and Samad (2005):

C. Myers et al. (U. of Utah)
• Iterative form of the Chemical Master Equation (CME):

$$p(\mathbf{x}') = \sum_{\Omega_k} \sum_j p(\mathbf{x}' | \mathbf{x}, R_j) p(\mathbf{x}, R_j)$$
$$= E_{\mathbf{x}, R} \left[p(\mathbf{x}' | \mathbf{x}, R_j) \right].$$

where:

- **x** is the system state at time *t*.
- \mathbf{x}' is the state at time t + dt.
- Ω_k is the domain of **x**.
- R_j are the possible reactions (R_0 is no-reaction).

Conditional Independence Approximation

 Suppose the elements of x' are conditionally independent, given x and a sequence of reaction events R, so that

$$p(\mathbf{x}' | \mathbf{x}, \mathbf{R}) = \prod_{i=1}^{M} p(x'_i | \mathbf{x}, \mathbf{R})$$

 Assuming that the covariances are small, then the updated joint probability density can be written as

$$p(\mathbf{x}') = E_{\mathbf{x},\mathbf{R}} \left[\prod_{i=1}^{M} p(x'_i | \mathbf{x}, \mathbf{R}) \right]$$
$$= \prod_{i=1}^{M} E_{\mathbf{x},\mathbf{R}} \left[p(x'_i | \mathbf{x}, \mathbf{R}) \right].$$

 This approximation allows evolving the marginal distributions for x_i', rather than the joint distribution for x.

C. Myers et al. (U. of Utah)

Genetic Design Automation

SSA-based MPDE

MPDE Results: Circadian Rhythm Example

Genetic Muller C-Element

Toggle Switch C-Element (Genetic Circuit)

Nguyen et al., 13th Symposium on Async. Ckts. & Sys., 2007 (best paper)

Toggle Switch C-Element (GCM)

C. Myers et al. (U. of Utah)

Toggle Switch C-Element (SBML)

Toggle Switch C-Element (Abstracted)

Reduced from 34 species and 31 reactions to 9 species and 15 reactions.

C. Myers et al. (U. of Utah)

Genetic Design Automation

Toggle Switch C-Element (Simulation)

Simulation time improved from 312 seconds to 20 seconds.

Majority Gate C-Element (Genetic Circuit)

Speed-Independent C-Element (Genetic Circuit)

Nullclines and Probability of Failure

Comparison of Failure Rates for the C-element Designs

Effects of Decay Rates

C. Myers et al. (U. of Utah)

Effects of Decay Rates

C. Myers et al. (U. of Utah)

Application: Bacterial Consensus

- One interesting application is designing bacteria that can hunt and kill tumor cells (Anderson et al.).
- Care must be taken in determining when to attack potential tumor cells.
- Can use a genetic Muller C-element and a bacterial consensus mechanism known as *quorum sensing*.
- C-element combines a noisy environmental trigger signal and a density dependent quorum sensing signal.
- Activated bacteria signal their neighbors to reach consensus.

Winstead et al., IBE Conference (2008)

C. Myers et al. (U. of Utah)

Genetic Design Automation

Confidence Amplifier

• A noisy C-element with a confidence-feedback loop:

- The output "rails" to maximum confidence, even if *S* has low confidence.
- This configuration only works if the C-element is "noisy". Otherwise, the circuit is permanently stuck in its initial state.

Quorum Trigger Circuit

Inactive Trigger Circuits

C. Myers et al. (U. of Utah)

Env signal applied Env⁽ (HSL concentration low)

One circuit randomly activates

Env⁷

(HSL concentration increases)

More circuits activate due to HSL

Env⁽

(HSL concentration increases sharply)

Avalanche effect: most cells activate

Env⁽

(HSL concentration saturates)

Env signal is removed.

(Circuits stay active)

C. Myers et al. (U. of Utah)

Time passes.

(Circuits randomly switch off)

Simulation Results

Simulation Results

Simulation Results

Quorum Trigger Design

- Genetic circuits have no signal isolation.
- Circuit products may interfere with each other and host cell.
- Gates in a genetic circuit library usually can only be used once.
- Behavior of circuits are non-deterministic in nature.
- No global clock, so timing is difficult to characterize.
- To address these challenges, we are investigating soft logic models based on *factor graphs* and adapting asynchronous synthesis tools to a genetic circuit technology.

Biologically Inspired Circuit Design

- Human inner ear performs the equivalent of one billion floating point operations per second and consumes only 14 μW while a game console with similar performance burns about 50 W (Sarpeshkar, 2006).
- We believe this difference is due to over designing components in order to achieve an extremely low probability of failure in every device.
- Future silicon and nano-devices will be much less reliable.
- For Moore's law to continue, future design methods should support the design of reliable systems using unreliable components.
- Biological systems constructed from very noisy and unreliable devices.
- GDA tools may be useful for future integrated circuit technologies.

More Information

- Linux/Windows/Mac versions of iBioSim are freely available from: http://www.async.ece.utah.edu/iBioSim/
- Publications:

http://www.async.ece.utah.edu/publications/

• Course materials:

http://www.async.ece.utah.edu/~myers/ece6760/
http://www.async.ece.utah.edu/~myers/math6790/

Engineering Genetic Circuits

C. Myers et al. (U. of Utah)

Acknowledgments

Nathan Barker

Keven Jones Hiroyuki Kuwahara

Curtis Madsen

Nam Nguyen Chris Winstead

This work is supported by the National Science Foundation under Grants No. 0331270, CCF-07377655, and CCF-0916042.

C. Myers et al. (U. of Utah)

Genetic Design Automation