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Structural uncertainties — measurement imprecisions

Measurements are often more
gualitativ than quantitative in
nature.
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When trying to understand, model, analyse etc.

Emab’ biological systems the consideration of
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How can systems theoretic methods and tools help ?
In such an uncertain environment?

FI33 NOD2
NMI ) GCH

AV 50"y N - Mathematical modelling
TEEAY e _ « Systems analysis
* Model validation/falsification
oot | » Modification of biological function
(o nciides 8024k

IFI21
PSME2

Will demonstrate with a number
of examples (mostly) in connection with apoptosi

Apoptosis —
Programmed Cell Death:
“suicide” program present
in every cell

»ISL? R =



Apoptosis

Apoptosis — Programmed Cell Death
* not by accident but highly organized & regulated
» caspases at the core of the apoptotic program

Essential for organism to remove
cells that are:

* old
* no longer needed

* potentially harmful (due to
mutations or infection)

* out of control

10 billion cells made each day to
balance those dying by apoptosis

Rate of Cell
Proliferation

Rate of cell death
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Disorders of cell accumulation e.g, cancer
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Disorders of cell loss e.g. Alzheimer’s




A Simple Model of Apoptotic Core Reactions

?
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based on established literature

Input: C8(a)

(activated) initiator caspases

Output: C3(a)

(act.) executioner caspases

IAP: inhibitors of apoptosis

proteins
Modelling:
v, =k, -C8a-C3
dC3a Vv v
dt 1 3 v6
—k, -C8a-C3
—k,-C3a-IAP
+k_,-iC3alAP
—k,C3a



Single Cell Experiment (P

[Kirschbaum and Scheurich]

Central Facility for
Microscopy and Image Analysis

at University of Stuttgart





Model validation using
simple bifurcation analysis

Thomas
Eissing




Steady States, Stability and Apoptosis ?

 Apotosis is no accident!
« “activation energy” required
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* stable steady state we require bistability in apoptosis

* bistability in biochemical reaction networks
[Ferrell,Angeli,Sontag,Lisman,Goldbeter,Kholodenko...]

ist?




Can the mathematical model exhibit bistable behavior? ?

input
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Input: C8(a)
(activated) initiator caspases

Output: C3(a)
(act.) executioner caspases

Model:
v, =k, -C8a-C3

dC3a
dt =V; = V3=V

=k, -C8a-C3
—k,-C3a-IAP
+k_,-iC3alAP
—k,C3a



Parameter Domain for Bistability ?

b= b

106 * bistability in dependence of
parameters connected in a

2 biologically meaningful way
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bistability in a small parameter domain far away from literature values




Model Evaluation

Model analysis reveals:
+ enables a bistable behavior

- parameter ranges not consistent with literature values

How to reconcile this point?

« model analysis indicates need
for control at the level of C8a

* hypothesis: similar to IAPs

- BAR (Stegh et al., JBC 2002)
binds to and inactivates C8a?

- extended model: 13 reactions, 8
ODEs

« McDonald et al., PNAS 2004
have now identified CARPs

input iC8aCARP (v13

vi

C8 —2 +C8a(s CARP(
DT [ l
V4T
AP~ C3a+—*—C3
3 VB 0%
v?) iC3alAP output

Systems theoretical analysis allows
e generation/verification/falsification of biological hypotheses




Modelling and Analysis of Apoptosis

Simple systems theoretic methods can be helpful to
analyze and refine mathematical models.

100 : o : B — C8(F0)

Further analysis: N _5«352233‘:?
o . b - - ..... . . ..... ________ CARP(t=0 dog
* Local sensitivity analysis VA e s
- Xeai (P AP ) — Xeoi . . BAR(t=0
s = Pi. ssi (P +AP;) BowithAp, =1% %8[G | — ceaeny
. Xggi Apj : ; A ;
- 0.1 .............
* Regional sensitivity analysis
01+ .77
0.01 e
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- relative initial value
- Stochastic analysis ,"
. : 0.01 1 0.1
allows to reconcile problems ** oo s
regarding cell population vs. “
ist® single cells [Eissing et al. IEEE CCA 2006, JBC 2004, IEE SB 2005]




Summary: Apoptosis Modelling

All analysis results support the hypothesis that the additional
regulation of C8a is likely to be present in nature.

Observation: Application of fairly standard tools, applied
in a smart way, allows to get meaning- and useful results.

Can be done this way, because model complexity is fairly
limited in this example.

But, biological systems are in general rather complex ...




Antitumoral Effects of Tumor Necrosis Factor in vivo ?

A single injection of TNF induces a hemorrhagic necrosis of the tumor

Old, Scientific American 1988




TNF Signaling Pathways

JNK

NF-kB

many pathways with input TNF have an effect on apoptosis:

- NF-kB: inflammation, anti-apoptotic
- Apoptosis: sacrifice the cell
- JNK: pro- and anti-apoptotic functions reported
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TNF Signaling Pathways

DNase
‘ Lipase —.nm\*m’e ]

(IkBa mRNA { %ﬂ% |
:. /k(P mRN

ATA 0T

Model for combined system:
* 74 biological reactions (interactions, expression, degradation)
* 41 molecules
*148 parameters (reaction rates) [Schliemann et al. DA 2006]
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and more complex
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Bifurcation search
In high-dimensional
parameter space

Steffen
Waldherr




Feedback circuits and dynamical behaviour

@ Feedback is abundant in signal transduction networks
Lm— _._’1 —[]— —[]—
< V< < <
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Kholodenko, Nature Rev. Mol. Cell Biol. 2006

@ Defining feedback circuits via the interaction graph
e ODE x = F(x) for biochemical network
@ Jacobian matrix ‘3—5 gives interaction graph

—
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Xs ; a(xy) — d(x3§ C Xlez 3
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Roles of feedback circuits

@ Positive feedback enables bistability (switching).
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@ Negative feedback enables sustained oscillations.
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Observation
e Feedback circuits enable complex dynamical behaviour.

e Parameter values are relevant for behaviour.
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The loop breaking approach

@ ODE model for signalling network: x = Sv(x,p) =

Loop breaking definition
A loop breaking is a pair (f, h) such that

F(x,p) =f(x,h(x),p)

@ Open loop system: x = f(x,u,p)

F(x,p)

y = h(x)

x =f(x,u,p)
y = h(x)

@ Closing the loop: u = h(x)
= we recover the closed loop system

sist?




Loop breaking: example

C.2

X3

' ; (x3) —d(x2)
Z = Z(ii) — d(:) C le‘Xz 3

Loop breaking: choosing y = x»

u) —d(xq1)

(
(X3) — d(X2) \
(X1) — d(X3) /

sist?

x1<—u y<—Xz



What is it good for?

Loop breaking benefit
@ Control theory methods for input—output systems can be used

@ Dynamical behaviour is less complex for open loop system
(e.g. no oscillations are possible)

@ Loop breaking point may have biological meaning

Application
Bifurcation search in high-dimensional parameter space

@ Bifurcation = qualitative change of dynamical behaviour

e From non-oscillatory to oscillatory behaviour
e From single stationary state to multi-stationarity

sist?



Changes in dynamical behaviour

Bistability

Critical parameters

7

Oscillations

Complex dynamical behaviour is coupled to unstable

stationary points.

+1st?
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On the border of stability Q

@ Change stability of stationary point X (F (X,p) = 0).

@ Find critical parameters in high-dimensional parameter space.
Problem statement

e Given ODE model of signalling network x = F(x, p),

@ given preliminary parameters p, and stationary point Xy,

o find parameters p, and stationary point X, such that stability is different
for X, and X,.

@ Critical parameter vector p; on any path between p; and p».

Classical approach
Vary one parameter at a time and do bifurcation analysis

numerically via e.g. continuation methods

sist?



Our approach: multi-parametric variations

?

Classical approach

ka , kz
oscill.

P1
stable

Our approach

oscill.

stable

ki

Characteristics (problems)
@ critical parameter vector p¢ is not unique
@ different dynamic regimes may exist

ki

sist?



Control engineering approach

@ Use loop breaking to reformulate problem

u

x = f(x,u,p)

y = h(x)

y

@ Linear approximation around stationary point x(p) and Laplace

transformation to frequency domain
y

’—> G(p,S) *‘

Result of reformulation

e Transfer function G(s, p) describes open loop characteristics

e Control theory (e.g. Nyquist criterion) can be used to check local
stability of the closed loop system

sist?



Theoretical results

@ Define critical frequencies w¢: G(p, jwe) € R (polynomial
equation for w¢) = solution branches wc(p)

Theorem

e There exists a critical parameter vector pc, if and only if there exist
parameters p; and p, such that

G(p1,jwe(p1)) < 1 < G(p2; jwe(P2))-
@ In this case, jwc(pc) is an eigenvalue of the closed loop system.
@ Some technical assumptions required, but not very restrictive.

Remarks

@ One of p;, p2 given by preliminary parameters.
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lllustration in the Nyquist plot

@ Plot of G(p,jw) for 0 < w < oo in the complex plane

Im

G(p1, jwe(p1))

G(pzviwC(p2))

Re
critical =]

frequencies

= X(p1) and x(p2) have different stability properties

+1st?



Numerics: iterative parameter search Q

@ Given p; where G(p1,jwe(p1)) <1,
find p, such that G(p2, jwc(p2)) > 1

@ Approach: Track a path p,, in parameter space such that
G(py,jwe(py)) changes in the desired way

@ Basically continuation, but use gradient of G(p, jwc(p)) to decide
which direction in parameter space to go

Iterative algorithm

@ Parameter update: Change parameters along the gradient of
G(p,jwc(p)) to change G(p,jwc(p)) towards the point 1.

@ Stationary state tracking: Solve F(X,p) = 0 and recompute new wc(p)

© lterate or finish if 1 has been crossed

Works well for medium-sized systems.
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NF~xB signalling

Model summary

@ 14 dynamic state variables, 25 reaction parameters
@ Model from Lipniacki et al., Journal of Theoretical Biology 2004

+1st?



Analysis of dynamical behaviour in NFxB signalling?

@ The original model is globally stable with damped oscillations.
@ A simplistic model without the outer feedback loop has

sustained, spiky oscillations.

0.05

NF-KB_ [nM]

0 100 200 300 400
t [min]

Questions

b sink

IKB”

source
/-
N\
KBmANA /
U

\ N |

00 400 600 800 1000 1200 1400 1600
time (min)

Krishna et al., PNAS 2006

@ Can the more complex model also show oscillations?
@ If yes, which parameter changes are required?
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Application of loop breaking to NF-«B signalling Q

@ Loop breaking point is chosen such that the two major feedback
circuits are broken simultaneously.

@ Finds parameter point such that the equilibrium becomes
unstable with imaginary eigenvalues (we; = 9 - 10—4%).
@ Suggested main parameter variations:
e Increase turnover of NF-xB target genes involved in the feedback

circuits by factors 7 and 3.
e Increase turnover of the NF-xB activating kinase IKK by factor 3.

sist?



Results: oscillations in NFxB
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Results

@ Sustained oscillations are possible
with physiological parameter values

@ Additional negative feedback circuit
does not necessarily destroy spiky
oscillations
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Global sensitivity analysis
under uncertainty

Jan
Hasenauer




Motivation

Question: Which TNF concentration is required to force all
cancer cells into apoptosis?
Answer: TNF*
C3a

death

e~ .

TNF* =7

Cancer cells show high mutation rates and are hence
uncertain systems.

Problem:

sist?



Motivation: Local vs. Global Uncertainty Analysis

i General Problem:

Chemical and biochemical signalling
pathways often show large modelling
uncertainties.

Basic Question:

How do uncertainties influence the
predictions?

Uncertainty analysis for the steady states

@ Local analysis: approximation at the nominal values
= boundaries obtained by extrapolation.

@ Global analysis: computation for a parameter set, P = [Pmin; Pmax)
= boundaries hold for p € P.

sist?



Motivation: Local vs. Global Uncertainty Analysis

i General Problem:

Chemical and biochemical signalling
pathways often show large modelling
uncertainties.

Basic Question:

How do uncertainties influence the
predictions?

Uncertainty analysis for the steady states

@ Local analysis: approximation at the nominal values
= boundaries obtained by extrapolation.

@ Global analysis: computation for a parameter set, P = [Pmin; Pmax)
= boundaries hold for p € P.
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System Class: Biochemical Reaction Networks

?

System class

We consider systems of ordinary differential equation,
x=S5-v(x,p), x(0)=xo,

where x € R" is the concentration vector, S € R™™ the stoichiometric
matrix, v(x, p) € R™ the reaction flux vector and p € R9 the vector of
independent parameters.

Steady state

The steady states x; of such systems are defined by

0=S5"v(xs,p).
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Problem Description

N

: 77
T2 /

— x =

Problem: Compute set of feasible steady states

Compute for a given set P C R9 the smallest subset A" C R” of the state
space, which contains all solutions xs of 0 = S v(xs, p), for p € P. Hence

X ={x€R"IpeP:S v(x,p)=0}.

sist?



Problem Description

X,

— 1 =

N}

Problem: Compute set of feasible steady states

Compute for a given set P C RY the smaltest subset X; C R” of the state
space, which contains all solutions xs of 0 = S v(xs, p), for p € P. Hence

X, O{xs €R"FpeP:S v(xs,p)=0}.

Xs as an outer approximation of Xy <= Xs; D XY

sist?



Formulation as Feasibility Problem ?

A= set of feasible steady states
Xy of an uncertain system
(in general not computable

analytically!)

1 X, Xs X
To ! W § X; = set for which infeasibility

| certificates can be computed

Xy X, = obtained outer
approximation of X

—_— T —

Feasibility problem
@ verification that a set X can not contain steady states

o feasibility problem:

find xXeEX, peP
such that S - v(x,p)=0.

(P) infeasible <= X" does not contain steady states for p € P.
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Summary: Reformulation of the Feasibility Problem ?

feasibility problem (P) —— "hard” to solve

reformulation using
a monomial vector &

quadratic feasibility problem (QP)

reformulation using
the monomial matrix X = ££7
and convex relaxation

relaxed convex feasibilty problem (RP)

employing duality

R et

Lagrange dual problem (DP) —— "easy” to solve




Quadratic Decomposition

Reformulation of steady state condition

e Assumption: vj(x,p) = r; Hx,fjk j=1,...,m
k=1
@ Steady state definition: 0= f(x,p) =S - v(x,p)
— 0=Ff(x,p)=&TQ:&, i=1,...,n,

e Monomial vector: {7 = (1,p1,...,Pgs X15- - -, Xn, P1X1, - - -) € RF

Quadratic feasibility problem

find £ € R"
) subjectto £TQE=0 i=1,...,n
& =1

in which x € X, p e P <= B¢ >0 with B = B(X, P).

(QP) infeasible <= (P) infeasible.
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Convex Relaxation

Feasibility problem

@ Symmetric monomial matrix: X = £€7

@ Feasibility problem in X:

find X es”
- subject to tr(QX)=0 i=1,...
(QP) : BXe; >0
tr(eref X) =1
rank(X) =1
in which ; =[1, 0, ..., 0]

sist?



Convex Relaxation

Relaxed feasibility problem

@ Symmetric monomial matrix: X = £€7

@ Feasibility problem in X:

find X es”
subject to tr(QX)=0 i=1,...
(RP) : BXey > 0
tr(eref X) =1
rapkXy=T X =0
in which e; =[1, 0, ..., 0]

Effect of relaxation
(RP) infeasible => (QP) infeasible <= (P) infeasible.

sist?



Lagrange Dual Problem

Lagrange dual problem

maximize 14
subject to e\ B+ el A BT + X\,
+ vy eref + ZVz,/ Q=0
=il
>\1 Z 0; >\2 = 0

(DP) :

o Lagrange multipliers: A\; € R2(+=1) X\, € §*, v € R and vy € R”

@ (DP) is a semidefinite optimization problem
— efficiently solvable

Theorem

(DP) unbounded above = (RP) infeasible => (P) infeasible.
— analysis of (DP) to verify that X can not contain steady states.
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Computation of the Set of Feasible Steady States

Algorithm
@ computation of X based on a bisection algorithm
@ in each bisection step the matrix B(X,P), with B{ > 0, is modified

@ lower and upper bounds for all state variables known initially

1

0 — T = 1




Computation of the Set of Feasible Steady States

Algorithm
@ computation of X based on a bisection algorithm
@ in each bisection step the matrix B(X,P), with B{ > 0, is modified
@ lower and upper bounds for all state variables known initially

L1min =

1




Computation of the Set of Feasible Steady States

Algorithm
@ computation of X based on a bisection algorithm
@ in each bisection step the matrix B(X,P), with B{ > 0, is modified

@ lower and upper bounds for all state variables known initially

1

Computation of
other boundaries

0 — T — 1




Computation of the Set of Feasible Steady States ?

Algorithm
@ computation of X based on a bisection algorithm
@ in each bisection step the matrix B(X,P), with B{ > 0, is modified

@ lower and upper bounds for all state variables known initially

1 wl,min L1, maz
I I
| |
| |
1 /XS 1
T _______ / _____ xQ,ma.T
| Lo/ | ____ T2, min
1 1
| |
I I
0 1 1
0 — T = 1

— lower and upper bounds for all state variables

sist?



TNF-Induced Anti-Apoptotic Signalling

specific specific

ligand 1 ligand 2
INE receptor, / \

module TNFRz e apoptosis

e proliferation
TNFR2 . .
complex o inflammation

— o Components:

Biological relevance:

T\IFRl

complex

RIP

_— o TNF-receptors
KK
IKK A20 . .
module o NF-kB signalling
pathway
NF-xB
module —XF-sB TxBa @ Model:
NEB A T
I o 24 state variables
NF-xB-LxBa o 56 parameter
NF-xB I-xBa
@ Inputs:
I-xBa production ° TNF]-
A20 production —m8 —— [} TNF2

TRAF2 production

gene expression modul

Output:

o NF-kBn
Schematic of antiapoptotic signalling pathway
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Computation of X

@ Parameter uncertainties of factors:
T _
p" =(p1,--,pq)
@ Parameter set P is a hyperrectangle

Set of feasible steady states for a variation: p" = (2,2,2,2)

Li,nom
T T T T
Tutervall [ min, £3,maz]
4= . < Monte-Carlo-Results
Timan  3- ] : E
and

Timin  2- ; i i

TRILRT TR2LT A20a InB NF—rxBn A20¢
TRILR TR2L TRAF2 IKKa NF—xB TRAF2 InBt




The TNF receptor network ?

e Two types of receptors
for TNF ligand:

TNF-R1, TNF-R2
« Crosstalk via the / \
adaptor protein TRAF2
» Apoptosis depends on | |
activity of TNF-R1 TNF-R1 \|| TNF-R2

complex SIIIITIIK ESSS00000iieecoossd | IRSSSSS:

Goal for global sensitivity analysis: Crosstalk

Evaluate effect of variations in
receptor-specific stimulation on
TNF-R1 activity l

Apoptosis

O A}



Global analysis of TNF stimulus variations ?

TRILRT
TNF-R1
activity,,,
70 TNF-R1
500- stimulation / \
250 - P
101
10{1)_ T : T
"o 2 P TNF-R1 TNF-R2
P2 2 11 1.1 (TNF1ly)  opaeseesed . R — T [ Ei——
(TNF2) ettt ity b et

TNF-R2 stimulation

Activity
regulation

Model prediction:
Receptor 2 regulates activity
of receptor 1 l

Apoptosis
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Model validation/falsification
under uncertainty

Christian
Breindl




Motivation

oSk Y

— > (STATH! ) 3
/\(’ > \ 4 L\

%
/
SX A
~o Ly
TPFSFRO- i
X

TPSME2

Zhu et al., BMC Bioinformatics 2008

Experimental observations of

Biological hypothesis = >
distinct operation modes

Qualitative model description Qualitative measurements

Can the biological hypothesis explain the experimental observations?
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Requirements for the Modeling and Analysis Framework?

@ Focus on gene regulation networks
@ Representation of the knowledge about the biological system

e Knowledge about / Hypothesis on interaction structure
o Large uncertainties about reaction kinetics

@ Represention of measurements of protein concentrations

e Often only qualitative information possible,
e.g. high or low, on or off
e Focus on steady state behavior, especially multistability

Goal

Introduction of a modeling and analysis framework which is appropriate
to

@ Represent the available biological knowledge and measurements

@ Answer to question wether model structure and qualitative
measurements are consistent

ist?




Modeling framework

@ Proteins are assumed to have linear degradation rates

@ A protein can either activate or inhibit the production of another
protein = use of general activation and inhibition functions
@ Kinetic uncertainties = exact shapes need not be specified

act(x) inh(x)

Model equations

)-<,':7k,"X,'+f;'(X), i=1,...,n
where f;(x) are composed of activation and inhibition functions.

sist?



Representation of measurements ?

X2
@ An operation mode corresponds X
,max
to a stable steady state and can y
be characterized by a X2 high
forward-invariant set
@ The projections of these sets
onto the coordinate axes are /
intervals of the form X2,low
Tijow = [O,Xlow] 0 X1low X1,high X1,max X1
. high = [Xhigh7 Xmax] Mutual inhibition network: %] = —kj - x + inhy(xp)

%y = —ky - xp + inhy(x1)
Example: Mutual inhibition network

o fl = [Oaxl,low] X [X2,high7X2,max]x B(fl) = (0) 1)
° -7:2 - [Xl,highaxl,max] X [OaXZ,low]x B(f2) = (170)




Exemplary problem formulation

@ Experimental observations

X2

X2, max
F1 X
X2 high

X2, low I—
F2

0 Xi,low X1,highX1l,max X1

@ Two alternative hypothesis:

51 = —ki-x3+inhi(xp) x1 = —ki-xi+inh;(x2)

Yo = —koxo+inhy(x1) e = —ko-x +acty(xi)

@ Which model can explain the observations?

sist?



Mathematical problem formulation

Experimental observations

@ m distinct operation modes
e Forward invariant sets F;, i=1,...,m
@ According Boolean lists B(F;), i=1,...,m

Validation problem

For the given model structure, do there exist activation and inhibition
functions such that the model exhibits m forward-invariant sets F;
which lie qualitatively at the same positions as the sets F;, i.e.

B(F))=B(F) i=1,...,m

sist?



Solving the problem - Concept of compatible intervals ?

Idea: Consider only one differential

equation at a time, e.g. X2
. . X2, max

X1 = —k]_ - X1+ 1nh1(X2) ‘7:1 X
X2, high

Def.: compatible intervals (sloppy)
Z,, is compatible with Z,, for this

differential equation X2, low ‘
= F2
Jinh; (x2) such that 0 Xilow X1,high X1,max X1

x1 cannot leave 7, as long x; € 7,

More generally

Given intervals Z,, for all proteins x;. If all intervals are compatible for all
equations, the set 7 =17, x ... x I, is forward-invariant.

sist?



Solving the problem - Decision rules

@ Decision rules allow to decide which types of intervals can be
compatible for an equation X; = —k; - x; + fi(x)
Definition of a decision rule (sloppy)
Example equation: X3 = —k; - x3 + inhj(x)

o A decision rule for this equation is an equation for the Boolean values of
the x1- and xe-intervals

o If B(Z,,) and B(Z,) fulfill the Boolean equation, these two intervals are
compatible

Example

For the equation: X; = —kj - x; + inhj(x2) there is the rule

B(Z,,) ~ not B(Z,,)

Therefore, e.g. 7, ,,, and I, .., are compatible (0 = not 1).
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Solving the problem - Decision rules

@ Decision rules allow to decide which types of intervals can be
compatible for an equation x; = —k; - x; + fi(x)

@ Systematic enumeration of all possible rules for arbitrarily complex
production terms f;(x) is possible with only few “building blocks"

Building blocks for arbitrary f;(x)

4. f; = act(xj-) + act(xy)
) | B(Zx;) ~ B(Zx;) and B(Zx,)
i) | B(Zx) ~ B(Zx;) or B(Zx,)
1| fi = act(x) - act(x) i) | B(Zx) ~ B(Zx;)
) [ B(Zx) ~ B(Zx;) and B(Zx, ) V) | B(Tx) ~ B(Tx)
i) | B(Zx) ~0 v) | B(Zx) ~0
2. | fi = act(x) - inh(x) 5. | f = act(x;)) + inh(x)
i) B(Zx;) ~ B(Zx;) and (not B(Zx, )) B) B(Zx;) ~ B(Zx;) and (not B(Zx,))
i) | B(Zx;) ~ B(Zx;) i) | B(Zx;) ~ B(Zx;) or (not B(Zx,))
iii) B(Ix )~0 i) | B(Zx;) ~ B(IX'J/.)
B} f; = nh(Xj) - inh(xg) iv) B(IX,.) ~ not B(ka)
B) (Zx;) ~ (mot B(Z;)) and (not B(Zx, ) v) | B(Zx) ~0
ii) B(Zx;) ~ (not B(Zx)) or (not B(Zx,)) vi) B(Zx) ~1
iii) B(Zx;) ~ not B(Ixj) 6. fi = inh(x;) + inh(x,)
iv) B(Zx;) ~ not B(Ix,) i) B(Zx;) ~ (not B(Zx;)) and (not B(ka))
v | B(Zx) ~1 i) | B(Zx;) ~ (not B(Zx;)) or (not B(Zx, ))
i) | B(Zx;) ~ not B(Zx;)
v) | B(Zx;) ~ mot B(Zx,)
v) | B(Zx) ~1




Solving the problem - Decision rules

Summary of the method

Validation problem can be translated into a combinatorial one and solved
algorithmically: Find a valid rule for every differential equation that
can explain all steady states

Computational complexity
@ each protein has maximally k regulating proteins

@ number of dynamical equations n

= maximum complexity is n - 6¢?

@ complexity is linear in system size n !!
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Example 1: Mutual inhibition network

Alternative model equations Observed steady states
).(1 = —kl - X1+ inhl(XQ) B(fl) = (0, 1)
).(2 = —k2 - Xo + inhz(xl) / aCt2(X1) B(fz) = (17 O)

@ The mutual inhibition network can be validated because of the

following valid rules
x2

X2, max

X2, high

B(Z,) ~ not B(Z,,)
B(Ixz) ~ not B(IX1) X2 low

0 X1, low X1,high*1l,max X1

@ The second hypothesis can be falsified as no valid rules exist that
can explain the observations




Example 2: Apoptosis Signaling Network ?

Desired behavior in absence of TNF:

<_| C8a

[

‘ 1k ‘ NFeB
[

o A stable living state S1 with
high [NFxB] and low [C3a]

L7vF | @ A stable apoptotic state S2
Example ODE: with low [NFxB] and high
xample : [C3a]

Al — _k([C3a]) + u([NFrB]) - v([C8a])

Application of the presented method shows:

@ There exist biologically reasonable concentrations for [/xB] and
[C84] and

@ activation and inhibition functions such that

@ S1 and S2 can be reproduced by the model

sist?



Summary

Method intended as a first qualitative validation for poorly
understood gene regulation networks

Focus on multistability, not on dynamical behavior

Efficient algorithm to solve the qualitative validation problem with
respect to multistability (complexity O(n - 6~1))

Not a Boolean approach, only analysis is performed with Boolean
rules

Proved valuable for a number of applications (apoptosis, lactose
utilization network of E. coli, ...)

It is not necessary to construct and simulate different models,
algorithm can already give a yes or no answer

Only qualitative result

ist?



Conclusions of Talk

When investigating biological systems typically significant
uncertainties have to be taken into account.

Systems and control theory provides many methods and tools
that allow to deal with uncertainty.

Showed with a number of examples that these methods are
Indeed useful when investigating biological systems.

The good news: There is the possibility (and the need !!) for ._
developing many new systems theoretic methods.

Systems biology is a “bonanza” for systems people © 7 it
\\f‘
mﬂ !
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