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Structural uncertainties – measurement imprecisions

But in addition, biological knowledge
is still rather incomplete.
E.g., 
Involved pathways? Involved proteins? 
Reaction rates? etc.pp.

Measurements are often more
qualitativ than quantitative in 
nature.

gene expression 
data from micro-
array experiments Western Blots for protein 

detection

When trying to understand, model, analyse etc. 
biological systems the consideration of
uncertainties is of major importance !!



How can systems theoretic methods and tools help
in such an uncertain environment?

Will demonstrate with a number 
of examples (mostly) in connection with apoptosis

Apoptosis –
Programmed Cell Death:
“suicide” program present 
in every cell

• Mathematical modelling
• Systems analysis 
• Model validation/falsification
• Modification of biological function
• …



Apoptosis

Apoptosis – Programmed Cell Death
• not by accident but highly organized & regulated
• caspases at the core of the apoptotic program

Essential for organism to remove 
cells that are:

• old
• no longer needed
• potentially harmful (due to 

mutations or infection)
• out of control

10 billion cells made each day to 
balance those dying by apoptosis



A Simple Model of Apoptotic Core Reactions

–corresponding to the 
before described 
inhibitor case

–C8(a): (activated) 
initiator caspases

–C3(a): (activated) 
executioner caspases

–IAP: inhibitors of 
apoptosis proteins
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Input: C8(a)
(activated) initiator caspases

Output:  C3(a)
(act.) executioner caspases

IAP: inhibitors of apoptosis 
proteins

based on established literature

Modelling:



Single Cell Experiment

Central Facility for 
Microscopy and Image Analysis
at University of Stuttgart

[Kirschbaum and Scheurich]




Model validation using
simple bifurcation analysis

Thomas 
Eissing



Steady States, Stability and Apoptosis

• Apotosis is no accident!
• “activation energy” required

• bistability in biochemical reaction networks 
[Ferrell,Angeli,Sontag,Lisman,Goldbeter,Kholodenko…]

☺

.

/
we require bistability in apoptosisstable steady state



Can the mathematical model exhibit bistable behavior?

–corresponding to the 
before described 
inhibitor case

–C8(a): (activated) 
initiator caspases

–C3(a): (activated) 
executioner caspases

–IAP: inhibitors of 
apoptosis proteins
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(activated) initiator caspases

Output:  C3(a)
(act.) executioner caspases

Model:



Parameter Domain for Bistability 

bistability in a small parameter domain far away from literature values

• bistability in dependence of 
parameters connected in a 
biologically meaningful way

• bistability: below red AND 
above green AND above 
blue area



Model Evaluation

Model analysis reveals:
+ enables a bistable behavior
- parameter ranges not consistent with literature values

How to reconcile this point?
• model analysis indicates need 

for control at the level of C8a
• hypothesis: similar to IAPs

- BAR (Stegh et al., JBC 2002) 
binds to and inactivates C8a? 

- extended model: 13 reactions, 8 
ODEs

• McDonald et al., PNAS 2004 
have now identified CARPs

Systems theoretical analysis allows 
generation/verification/falsification of biological hypotheses



Modelling and Analysis of Apoptosis

Simple systems theoretic methods can be helpful to 
analyze and refine mathematical models. 
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Further analysis:

• Local sensitivity analysis

• Regional sensitivity analysis

• Stochastic analysis 
allows to reconcile problems 
regarding cell population vs.    
single cells [Eissing et al. IEEE CCA 2006, JBC 2004, IEE SB 2005]



Summary: Apoptosis Modelling

Observation: Application of fairly standard tools, applied 
in a smart way, allows to get meaning- and useful results.

All analysis results support the hypothesis that the additional 
regulation of C8a is likely to be present in nature.

Can be done this way, because model complexity is fairly 
limited in this example. 

But, biological systems are in general rather complex …



Antitumoral Effects of Tumor Necrosis Factor in vivo

A single injection of TNF induces a hemorrhagic necrosis of the tumor

Old, Scientific American 1988



TNF Signaling Pathways

many pathways with input TNF have an effect on apoptosis:

- NF-κB: inflammation, anti-apoptotic
- Apoptosis: sacrifice the cell
- JNK: pro- and anti-apoptotic functions reported 
- …



TNF Signaling Pathways

Model for combined system:
• 74 biological reactions (interactions, expression, degradation) 
• 41 molecules
•148 parameters (reaction rates)                 [Schliemann et al. DA 2006]



… and more complex



Bifurcation search 
in high-dimensional 
parameter space

Steffen 
Waldherr



Feedback circuits and dynamical behaviour

Feedback is abundant in signal transduction networks

Kholodenko, Nature Rev. Mol. Cell Biol. 2006

Defining feedback circuits via the interaction graph
ODE ẋ = F (x) for biochemical network
Jacobian matrix ∂F

∂x gives interaction graph

ẋ1 = a(x2)− d(x1)

ẋ2 = a(x3)− d(x2)

ẋ3 = a(x1)− d(x3)

=̂

x1 x2

x3



Roles of feedback circuits

Positive feedback enables bistability (switching).
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Negative feedback enables sustained oscillations.
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Observation

Feedback circuits enable complex dynamical behaviour.

Parameter values are relevant for behaviour.



The loop breaking approach

ODE model for signalling network: ẋ = Sv(x , p) = F (x , p)

Loop breaking definition

A loop breaking is a pair (f , h) such that

F (x , p) = f (x , h(x), p)

Open loop system: ẋ = f (x , u, p)
y = h(x)

Closing the loop: u = h(x)
⇒ we recover the closed loop system

ẋ = f (x , u, p)

y = h(x)

yu



Loop breaking: example

ẋ1 = a(x2)− d(x1)

ẋ2 = a(x3)− d(x2)

ẋ3 = a(x1)− d(x3) x1 x2

x3

Loop breaking: choosing y = x2

ẋ1 = a(u)− d(x1)

ẋ2 = a(x3)− d(x2)

ẋ3 = a(x1)− d(x3)

y = x2
x1 x2

x3

u y



What is it good for?

Loop breaking benefit
Control theory methods for input–output systems can be used

Dynamical behaviour is less complex for open loop system
(e.g. no oscillations are possible)

Loop breaking point may have biological meaning

Application
Bifurcation search in high-dimensional parameter space

Bifurcation = qualitative change of dynamical behaviour
From non-oscillatory to oscillatory behaviour
From single stationary state to multi-stationarity



Changes in dynamical behaviour

p

x̄

Critical parameters

Bistability

p

x̄

Critical parameters

Oscillations

Complex dynamical behaviour is coupled to unstable
stationary points.



On the border of stability

Change stability of stationary point x̄ (F (x̄ , p) = 0).

Find critical parameters in high-dimensional parameter space.

Problem statement

Given ODE model of signalling network ẋ = F (x , p),

given preliminary parameters p1 and stationary point x̄1,

find parameters p2 and stationary point x̄2 such that stability is different
for x̄1 and x̄2.

Critical parameter vector pc on any path between p1 and p2.

Classical approach
Vary one parameter at a time and do bifurcation analysis

numerically via e.g. continuation methods



Our approach: multi-parametric variations

Classical approach Our approach

k1

k2
oscill.

stable
p1

k1

k2
oscill.

stable
p1

p2

p̃2

pc

p̃c

Characteristics (problems)
critical parameter vector pc is not unique

different dynamic regimes may exist



Control engineering approach

Use loop breaking to reformulate problem

ẋ = f (x , u, p)

y = h(x)

yu

Linear approximation around stationary point x̄(p) and Laplace
transformation to frequency domain

G(p, s)
yu

Result of reformulation

Transfer function G(s, p) describes open loop characteristics

Control theory (e.g. Nyquist criterion) can be used to check local
stability of the closed loop system



Theoretical results

Define critical frequencies ωc : G(p, jωc) ∈ R (polynomial
equation for ωc) ⇒ solution branches ωc(p)

Theorem

There exists a critical parameter vector pc , if and only if there exist
parameters p1 and p2 such that

G(p1, jωc(p1)) ≤ 1 ≤ G(p2, jωc(p2)).

In this case, jωc(pc) is an eigenvalue of the closed loop system.

Some technical assumptions required, but not very restrictive.

Remarks

One of p1, p2 given by preliminary parameters.



Illustration in the Nyquist plot

Plot of G(p, jω) for 0 ≤ ω < ∞ in the complex plane

critical
frequencies

Re

Im

1

G(p1, jωc(p1))

G(p2, jωc(p2))

⇒ x̄(p1) and x̄(p2) have different stability properties



Numerics: iterative parameter search

Given p1 where G(p1, jωc(p1)) < 1,
find p2 such that G(p2, jωc(p2)) > 1

Approach: Track a path pµ in parameter space such that
G(pµ, jωc(pµ)) changes in the desired way

Basically continuation, but use gradient of G(p, jωc(p)) to decide
which direction in parameter space to go

Iterative algorithm

1 Parameter update: Change parameters along the gradient of
G(p, jωc(p)) to change G(p, jωc(p)) towards the point 1.

2 Stationary state tracking: Solve F (x̄ , p) = 0 and recompute new ωc(p)

3 Iterate or finish if 1 has been crossed

Works well for medium-sized systems.



NFκB signalling

Model summary

14 dynamic state variables, 25 reaction parameters

Model from Lipniacki et al., Journal of Theoretical Biology 2004



Analysis of dynamical behaviour in NFκB signalling

The original model is globally stable with damped oscillations.
A simplistic model without the outer feedback loop has
sustained, spiky oscillations.
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Krishna et al., PNAS 2006

Questions
Can the more complex model also show oscillations?

If yes, which parameter changes are required?



Application of loop breaking to NF-κB signalling

Loop breaking point is chosen such that the two major feedback
circuits are broken simultaneously.

Finds parameter point such that the equilibrium becomes
unstable with imaginary eigenvalues (ωc = 9 · 10−4 1

s).
Suggested main parameter variations:

Increase turnover of NF-κB target genes involved in the feedback
circuits by factors 7 and 3.
Increase turnover of the NF-κB activating kinase IKK by factor 3.



Results: oscillations in NFκB
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Results

Sustained oscillations are possible
with physiological parameter values

Additional negative feedback circuit
does not necessarily destroy spiky
oscillations



Global sensitivity analysis 
under uncertainty

Jan 
Hasenauer



Motivation

Question: Which TNF concentration is required to force all
cancer cells into apoptosis?

Answer: TNF ∗

life

death

TNF

C3a

TNF∗ = ?

Problem: Cancer cells show high mutation rates and are hence
uncertain systems.



Motivation: Local vs. Global Uncertainty Analysis
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General Problem:
Chemical and biochemical signalling
pathways often show large modelling
uncertainties.

Basic Question:
How do uncertainties influence the
predictions?

Uncertainty analysis for the steady states

Local analysis: approximation at the nominal values
⇒ boundaries obtained by extrapolation.

Global analysis: computation for a parameter set, P = [pmin, pmax ]
⇒ boundaries hold for p ∈ P.



Motivation: Local vs. Global Uncertainty Analysis
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General Problem:
Chemical and biochemical signalling
pathways often show large modelling
uncertainties.

Basic Question:
How do uncertainties influence the
predictions?

Uncertainty analysis for the steady states

Local analysis: approximation at the nominal values
⇒ boundaries obtained by extrapolation.

Global analysis: computation for a parameter set, P = [pmin, pmax ]
⇒ boundaries hold for p ∈ P.



System Class: Biochemical Reaction Networks

System class

We consider systems of ordinary differential equation,

ẋ = S · v(x , p), x(0) = x0,

where x ∈ Rn is the concentration vector, S ∈ Rnxm the stoichiometric
matrix, v(x , p) ∈ Rm the reaction flux vector and p ∈ Rq the vector of
independent parameters.

Steady state

The steady states xs of such systems are defined by

0 = S · v(xs , p).



Problem Description

X ∗
s

x1

x2

1

Problem: Compute set of feasible steady states

Compute for a given set P ⊂ Rq the smallest subset X ∗
s ⊂ Rn of the state

space, which contains all solutions xs of 0 = S ·v(xs , p), for p ∈ P. Hence

X ∗
s = {xs ∈ Rn|∃ p ∈ P : S · v(xs , p) = 0} .

Xs as an outer approximation of X ∗
s ⇐⇒ Xs ⊃ X ∗

s



Problem Description

Xs

X ∗
s

x1

x2

1

Problem: Compute set of feasible steady states

Compute for a given set P ⊂ Rq the���
�

smallest subset Xs ⊂ Rn of the state
space, which contains all solutions xs of 0 = S ·v(xs , p), for p ∈ P. Hence

Xs ⊃{xs ∈ Rn|∃ p ∈ P : S · v(xs , p) = 0} .

Xs as an outer approximation of X ∗
s ⇐⇒ Xs ⊃ X ∗

s



Formulation as Feasibility Problem

X1 X2

X3

X4

Xs

X ∗
s

x1

x2

X ∗
s = set of feasible steady states

of an uncertain system
(in general not computable
analytically!)

Xi = set for which infeasibility
certificates can be computed

Xs = obtained outer
approximation of X ∗

s

1

Feasibility problem

verification that a set X can not contain steady states

feasibility problem:

(P) :

{
find x ∈ X , p ∈ P
such that S · v(x , p) = 0.

(P) infeasible ⇐⇒ X does not contain steady states for p ∈ P.



Summary: Reformulation of the Feasibility Problem

”hard” to solvefeasibility problem (P)

reformulation using
a monomial vector ξ

quadratic feasibility problem (QP)

reformulation using
the monomial matrix X = ξξT

and convex relaxation

relaxed convex feasibilty problem (RP)

employing duality

Lagrange dual problem (DP) ”easy” to solve



Quadratic Decomposition

Reformulation of steady state condition

Assumption: vj(x , p) = rj

n∏
k=1

x
σjk

k j = 1, . . . ,m

Steady state definition: 0 = f (x , p) = S · v(x , p)
⇐⇒ 0 = fi (x , p) = ξTQiξ, i = 1, . . . , n,

Monomial vector: ξT = (1, p1, . . . , pq, x1, . . . , xn, p1x1, . . .) ∈ Rκ

Quadratic feasibility problem

(QP) :


find ξ ∈ Rκ
subject to ξTQiξ = 0 i = 1, . . . , n

B ξ ≥ 0
ξ1 = 1.

in which x ∈ X , p ∈ P ⇐⇒ B ξ ≥ 0 with B = B(X ,P).

(QP) infeasible ⇐⇒ (P) infeasible.



Convex Relaxation

Feasibility problem

Symmetric monomial matrix: X = ξξT

Feasibility problem in X :

(Q̃P) :


find X ∈ Sκ
subject to tr(QiX ) = 0 i = 1, . . . , n

BXe1 ≥ 0
tr(e1e

T
1 X ) = 1

rank(X ) = 1

in which e1 = [1, 0, . . . , 0]T

Effect of relaxation

(RP) infeasible =⇒ (QP) infeasible ⇐⇒ (P) infeasible.



Convex Relaxation

Relaxed feasibility problem

Symmetric monomial matrix: X = ξξT

Feasibility problem in X :

(RP) :


find X ∈ Sκ
subject to tr(QiX ) = 0 i = 1, . . . , n

BXe1 ≥ 0
tr(e1e

T
1 X ) = 1

((((
((rank(X ) = 1 X < 0

in which e1 = [1, 0, . . . , 0]T

Effect of relaxation

(RP) infeasible =⇒ (QP) infeasible ⇐⇒ (P) infeasible.



Lagrange Dual Problem

Lagrange dual problem

(DP) :



maximize ν1

subject to e1λ
T
1 B + eT

1 λ
T
1 BT + λ2

+ ν1 e1e
T
1 +

n∑
i=1

ν2,i Qi = 0

λ1 ≥ 0, λ2 < 0

Lagrange multipliers: λ1 ∈ R2(κ−1), λ2 ∈ Sκ, ν1 ∈ R and ν2 ∈ Rn

(DP) is a semidefinite optimization problem
=⇒ efficiently solvable

Theorem

(DP) unbounded above =⇒ (RP) infeasible =⇒ (P) infeasible.
=⇒ analysis of (DP) to verify that X can not contain steady states.



Computation of the Set of Feasible Steady States

Algorithm

computation of Xs based on a bisection algorithm

in each bisection step the matrix B(X ,P), with B ξ ≥ 0, is modified

lower and upper bounds for all state variables known initially

0
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0 1

X ∗
s

x1

x2

1



Computation of the Set of Feasible Steady States

Algorithm

computation of Xs based on a bisection algorithm

in each bisection step the matrix B(X ,P), with B ξ ≥ 0, is modified

lower and upper bounds for all state variables known initially

0

1

0 1

x1,min = ?

X ∗
s

x1

x2

1



Computation of the Set of Feasible Steady States

Algorithm

computation of Xs based on a bisection algorithm

in each bisection step the matrix B(X ,P), with B ξ ≥ 0, is modified

lower and upper bounds for all state variables known initially

Computation of
other boundaries

0
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0 1

X ∗
s

x1

x2

1



Computation of the Set of Feasible Steady States

Algorithm

computation of Xs based on a bisection algorithm

in each bisection step the matrix B(X ,P), with B ξ ≥ 0, is modified

lower and upper bounds for all state variables known initially

0

1

0 1

x1,min x1,max

x2,min

x2,max

Xs

X ∗
s

x1

x2

1

=⇒ lower and upper bounds for all state variables



TNF -Induced Anti-Apoptotic Signalling

Schematic of antiapoptotic signalling pathway

Biological relevance:

apoptosis
proliferation
inflammation

Components:

TNF -receptors
NF -κB signalling
pathway

Model:

24 state variables
56 parameter

Inputs:

TNF1
TNF2

Output:

NF -κBn



Computation of Xs

Parameter uncertainties of factors:
ρT = (ρ1, . . . , ρq)

Parameter set P is a hyperrectangle log
p1

p1,nom

log
p2

p2,nom

11
ρ1

ρ1

1
1
ρ2

ρ2
P

1

Set of feasible steady states for a variation: ρT = (2, 2, 2, 2)



The TNF receptor network

• Two types of receptors 
for TNF ligand:
TNF-R1, TNF-R2

• Crosstalk via the 
adaptor protein TRAF2

• Apoptosis depends on 
activity of TNF-R1
complex

Goal for global sensitivity analysis:
Evaluate effect of variations in 
receptor-specific stimulation on 
TNF-R1 activity



Global analysis of TNF stimulus variations

TNF-R1
activity

TNF-R2 stimulation

TNF-R1 
stimulation

Model prediction:
Receptor 2 regulates activity 
of receptor 1



Model validation/falsification
under uncertainty

Christian 
Breindl



Motivation

Zhu et al., BMC Bioinformatics 2008

Biological hypothesis

Qualitative model description

?⇐⇒

Experimental observations of
distinct operation modes

Qualitative measurements

Can the biological hypothesis explain the experimental observations?

,



Requirements for the Modeling and Analysis Framework

Focus on gene regulation networks

Representation of the knowledge about the biological system

Knowledge about / Hypothesis on interaction structure
Large uncertainties about reaction kinetics

Represention of measurements of protein concentrations

Often only qualitative information possible,
e.g. high or low, on or off
Focus on steady state behavior, especially multistability

Goal
Introduction of a modeling and analysis framework which is appropriate
to

Represent the available biological knowledge and measurements

Answer to question wether model structure and qualitative
measurements are consistent

,



Modeling framework

Proteins are assumed to have linear degradation rates

A protein can either activate or inhibit the production of another
protein ⇒ use of general activation and inhibition functions

Kinetic uncertainties ⇒ exact shapes need not be specified

0 x

act(x)

N

0 x

inh(x)

M

Model equations

ẋi = −ki · xi + fi (x), i = 1, . . . , n
where fi (x) are composed of activation and inhibition functions.

,



Representation of measurements

An operation mode corresponds
to a stable steady state and can
be characterized by a
forward-invariant set

The projections of these sets
onto the coordinate axes are
intervals of the form

Ix,low = [0, xlow]

Ix,high = [xhigh, xmax]

x1

x2

0 x1,max

x2,max

x2,high

x2,low

x1,low x1,high

F2

F1
X

Mutual inhibition network: ẋ1 = −k1 · x1 + inh1(x2)

ẋ2 = −k2 · x2 + inh2(x1)

Example: Mutual inhibition network

F1 = [0, x1,low]× [x2,high, x2,max], B(F1) = (0, 1)

F2 = [x1,high, x1,max]× [0, x2,low], B(F2) = (1, 0)

,



Exemplary problem formulation

Experimental observations

x1

x2

0 x1,max

x2,max

x2,high

x2,low

x1,low x1,high

F2

F1 X

Two alternative hypothesis:

ẋ1 = −k1 · x1 + inh1(x2)

ẋ2 = −k2 · x2 + inh2(x1)

ẋ1 = −k1 · x1 + inh1(x2)

ẋ2 = −k2 · x2 + act2(x1)

Which model can explain the observations?

,



Mathematical problem formulation

Experimental observations

m distinct operation modes

Forward invariant sets Fi , i = 1, . . . ,m

According Boolean lists B(Fi ), i = 1, . . . ,m

Validation problem

For the given model structure, do there exist activation and inhibition
functions such that the model exhibits m forward-invariant sets F̃i

which lie qualitatively at the same positions as the sets Fi , i.e.

B(Fi ) = B(F̃i ) i = 1, . . . ,m

,



Solving the problem - Concept of compatible intervals

Idea: Consider only one differential
equation at a time, e.g.

ẋ1 = −k1 · x1 + inh1(x2)

Def.: compatible intervals (sloppy)

Ix2 is compatible with Ix1 for this
differential equation
⇒
∃inh1(x2) such that
x1 cannot leave Ix1 as long x2 ∈ Ix2

x1

x2

0 x1,max

x2,max

x2,high

x2,low

x1,low x1,high

F2

F1 X

More generally

Given intervals Ixi for all proteins xi . If all intervals are compatible for all
equations, the set F = Ix1 × . . .× Ixn is forward-invariant.

,



Solving the problem - Decision rules

Decision rules allow to decide which types of intervals can be
compatible for an equation ẋi = −ki · xi + fi (x)

Definition of a decision rule (sloppy)

Example equation: ẋ1 = −k1 · x1 + inh1(x2)

A decision rule for this equation is an equation for the Boolean values of
the x1- and x2-intervals

If B(Ix1 ) and B(Ix2 ) fulfill the Boolean equation, these two intervals are
compatible

Example

For the equation: ẋ1 = −k1 · x1 + inh1(x2) there is the rule

B(Ix1) ∼ not B(Ix2)

Therefore, e.g. Ix1,low and Ix2,high are compatible (0 = not 1).

,



Solving the problem - Decision rules

Decision rules allow to decide which types of intervals can be
compatible for an equation ẋi = −ki · xi + fi (x)
Systematic enumeration of all possible rules for arbitrarily complex
production terms fi (x) is possible with only few “building blocks”

Building blocks for arbitrary fi(x)

1. fi = act(xj ) · act(xk )

i) B(Ixi
) ∼ B(Ixj

) and B(Ixk
)

ii) B(Ixi
) ∼ 0

2. fi = act(xj ) · inh(xk )

i) B(Ixi
) ∼ B(Ixj

) and (not B(Ixk
))

ii) B(Ixi
) ∼ B(Ixj

)

iii) B(Ixi
) ∼ 0

3. fi = inh(xj ) · inh(xk )

i) B(Ixi
) ∼ (not B(Ixj

)) and (not B(Ixk
))

ii) B(Ixi
) ∼ (not B(Ixj

)) or (not B(Ixk
))

iii) B(Ixi
) ∼ not B(Ixj

)

iv) B(Ixi
) ∼ not B(Ixk

)

v) B(Ixi
) ∼ 1

4. fi = act(xj ) + act(xk )

i) B(Ixi
) ∼ B(Ixj

) and B(Ixk
)

ii) B(Ixi
) ∼ B(Ixj

) or B(Ixk
)

iii) B(Ixi
) ∼ B(Ixj

)

iv) B(Ixi
) ∼ B(Ixk

)

v) B(Ixi
) ∼ 0

5. fi = act(xj ) + inh(xk )

i) B(Ixi
) ∼ B(Ixj

) and (not B(Ixk
))

ii) B(Ixi
) ∼ B(Ixj

) or (not B(Ixk
))

iii) B(Ixi
) ∼ B(Ixj

)

iv) B(Ixi
) ∼ not B(Ixk

)

v) B(Ixi
) ∼ 0

vi) B(Ixi
) ∼ 1

6. fi = inh(xj ) + inh(xk )

i) B(Ixi
) ∼ (not B(Ixj

)) and (not B(Ixk
))

ii) B(Ixi
) ∼ (not B(Ixj

)) or (not B(Ixk
))

iii) B(Ixi
) ∼ not B(Ixj

)

iv) B(Ixi
) ∼ not B(Ixk

)

v) B(Ixi
) ∼ 1

,



Solving the problem - Decision rules

Summary of the method

Validation problem can be translated into a combinatorial one and solved
algorithmically: Find a valid rule for every differential equation that
can explain all steady states

Computational complexity

each protein has maximally k regulating proteins

number of dynamical equations n

⇒ maximum complexity is n · 6k−1

complexity is linear in system size n !!

,



Example 1: Mutual inhibition network

Alternative model equations

ẋ1 = −k1 · x1 + inh1(x2)

ẋ2 = −k2 · x2 + inh2(x1) / act2(x1)

Observed steady states

B(F1) = (0, 1)

B(F2) = (1, 0)

The mutual inhibition network can be validated because of the
following valid rules

B(Ix1) ∼ not B(Ix2)

B(Ix2) ∼ not B(Ix1)

x1

x2

0 x1,max

x2,max

x2,high

x2,low

x1,low x1,high

F2

F1
X

The second hypothesis can be falsified as no valid rules exist that
can explain the observations

,



Example 2: Apoptosis Signaling Network

Example ODE:
d [C3a]

dt = −k([C3a]) + µ([NFκB]) · ν([C8a])

Desired behavior in absence of TNF:

A stable living state S1 with
high [NFκB] and low [C3a]

A stable apoptotic state S2
with low [NFκB] and high
[C3a]

Application of the presented method shows:

There exist biologically reasonable concentrations for [IκB] and
[C8a] and

activation and inhibition functions such that

S1 and S2 can be reproduced by the model

,



Summary

Method intended as a first qualitative validation for poorly
understood gene regulation networks

Focus on multistability, not on dynamical behavior

Efficient algorithm to solve the qualitative validation problem with
respect to multistability (complexity O(n · 6k−1))

Not a Boolean approach, only analysis is performed with Boolean
rules

Proved valuable for a number of applications (apoptosis, lactose
utilization network of E. coli, ...)

It is not necessary to construct and simulate different models,
algorithm can already give a yes or no answer

Only qualitative result

,



Conclusions of Talk

When investigating biological systems typically significant 
uncertainties have to be taken into account.

Systems and control theory provides many methods and tools 
that allow to deal with uncertainty.

Showed with a number of examples that these methods are 
indeed useful when investigating biological systems.

The good news: There is the possibility (and the need !!) for 
developing many new systems theoretic methods. 
Systems biology is a “bonanza” for systems people ☺
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