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Adaptive dynamics with a single
two-state protein

Attila Csikász-Nagy* and Orkun S. Soyer
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An important step towards understanding biological systems is to relate simple biochemical
elements to dynamics. Here, we present the arguably simplest dynamical element in
biochemical networks. It consists of a single protein with two states (active and inactive) and
an external signal that catalyses the conversion between these two states. Further, there is
steady synthesis and degradation of the inactive and active forms, respectively. As this
element captures both structural and dynamical features of biochemical networks at the
lowest level, we refer to it as a biochemical network unit (BioNetUnit). Using both
simulations and mathematical analysis, we find that BioNetUnit shows perfect adaptation
that leads to temporal responses to step changes in the incoming signal. Compared with a
well-described adaptive system, which is found in bacterial chemotaxis, BioNetUnit has
lower sensitivity and its adaptation time is less robust to the base signal levels. We show that
these dynamical limitations lead to ‘once-and-only-once’ responses for certain signal
sequences. These findings demonstrate that BioNetUnit is relevant in adaptive and cyclic
processes. In particular, it could be seen as a generic representation for ligand-activated
receptors that are desensitized upon continuous activation. The analysis of coupled
BioNetUnits will show how the presented dynamics at single unit will change upon increased
system complexity and how such systems would mediate biological functions.

Keywords: modularity; adaptive dynamics; computational modelling; chemotaxis;
feed-forward loop; cell cycle

1. INTRODUCTION

All biological phenomena are the result of the under-
lying system dynamics. In the case of cellular responses,
the dynamics result from the interactions of several
proteins, constituting a pathway. Understanding such
dynamics requires knowledge of the identity and the
amount of proteins involved, their interactions and
the kinetic rates governing those interactions. Alter-
natively, one could try to dissect universal structural
and biochemical elements that always give rise to the
same dynamics, so that pinpointing these elements in
complex systems might lead to functional inference in a
‘bottom-up’ fashion. Put differently, such elements
could be thought of as the modules or building blocks of
cellular systems (Hartwell et al. 1999). There have been
several attempts to link specific dynamics to
key structural and biochemical elements. The general
structural elements such as feed-forward loops and
negative feedback are associated with response accel-
eration (Mangan & Alon 2003) and oscillations

(Goldbeter 1996), respectively. These two elements
(Behar et al. 2007) as well as a simple system, composed
of a receptor and two proteins controlling its activity
(Barkai & Leibler 1997), were proposed to underlie
adaptation (i.e. transient response to sustained stimuli).
Simple pathways of two or three proteins with their
associated biochemistry are shown to underlie diverse
sets of dynamics including bistability, amplification and
oscillation (Tyson et al. 2003; Soyer et al. 2006). All
these works concentrate on small systems of two or
more interacting proteins as a proxy for a modular unit
and analyse their dynamical capacities. It is also
possible to apply such an approach at the lowest level
possible, that of a single protein. Recently, it has been
shown that the input–output relation in a two-
component module could be highly robust to fluctu-
ations in the levels of the components of the system
(Shinar et al. 2007). Such findings and the obvious role
of a single protein as the ‘building block’ of larger
systems prompt us to consider here the dynamics of the
simplest biochemical network module imaginable.

1.1. Introduction to BioNetUnit

From a biochemical perspective, the simplest building
block of biological networks is a protein with all its

J. R. Soc. Interface
doi:10.1098/rsif.2008.0099.focus

Published online

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsif.2008.0099 or via http://journals.royalsociety.org.

One contribution to a Theme Supplement ‘Biological switches and
clocks’.

*Author for correspondence (csikasz@cosbi.eu).

Received 10 March 2008
Accepted 10 April 2008 1 This journal is q 2008 The Royal Society

Regulating the total level of a signaling protein can vary
its dynamics in a range from switch like ultrasensitivity
to adaptive responses
Orkun S. Soyer, Hiroyuki Kuwahara and Attila Csikász-Nagy

Microsoft Research – University of Trento Centre for Computational and Systems Biology, Italy

Cells process information from their environment and
produce appropriate responses. Such information pro-
cessing usually requires the coordinated action of
many proteins forming a so-called signal transduction
cascade or network. Achieving a global understanding
of how these signaling networks function is one of the
major challenges facing systems biology. The complex-
ity of individual networks can be such that even full
discovery of the proteins involved and characterization
of their interactions might not allow an intuitive
understanding of the signal–response relation [1]. This
necessitates the use of appropriate modeling
approaches to be applied in conjunction with experi-
mental studies. Models range from highly realistic to
highly abstract, depending on the extent of the avail-
able experimental information for a given system. One

strategy towards the latter end of the spectrum is to
develop generic models that can capture the basic
properties and dynamics of proteins found in signaling
networks and to use these to build larger models [2–6].

Despite all of its complicated biochemistry, a signal-
ing protein can be summarized as an entity with two
states (modified and unmodified). The state in which
the protein is found may be influenced by external sig-
nals (e.g. ligands) or other proteins (e.g. kinases) that
act as ‘input’, whereas one state of the signaling protein
could be considered as the ‘output’, influencing the
state of other proteins or DNA. Models abstracting a
single signaling protein in this way have been developed
[2,3] and are widely used to build larger models com-
posed of multiple, connected signaling proteins [4]. The
single protein model in these and other studies assumes
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Biological signaling networks can exhibit rich response dynamics including
ultrasensitivity, adaptation to persistent stimuli and oscillations. Previous
modeling efforts have considered the proteins in these networks as two-
state entities and their total levels as fixed quantities. However, inside the
cell, most molecules are in constant flux because of various processes such
as degradation, synthesis, binding of scaffold proteins and release from ves-
icles. The resulting freedom in the amount of signaling protein that is avail-
able for signaling has not been explored. Here, we analyze the response
dynamics of a signaling protein when it enters the signaling pool in one
state (modified or unmodified) and exits in both states. When the exit rates
of these two states are comparable, a persistent stimulus results in step
responses and can produce ultrasensitivity, as shown previously. However,
we find that when the exit rates are imbalanced, the signaling protein gives
transient responses to persistent stimuli even though the system does not
have any explicit feedback. Further, these rates determine the signal range
over which the system is responsive. Building small networks from signal-
ing proteins with different exit rates, we show that these systems can exhi-
bit rich behavior. Taken together, these findings indicate that altering the
total level of signaling proteins can significantly change their response and
provide additional richness in system dynamics. We discuss relevant biolog-
ical examples in which regulating total protein levels could be exploited to
alter signaling behavior.
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Single two-state protein motifs as plastic 
building blocks of response dynamics
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Features rendering biological systems 
robust are byproducts of evolution 
under fluctuating (and co-evolving) 

environments

Parasites lead to evolution of robustness against gene
loss in host signaling networks
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Many biological networks can maintain their function against single gene loss. However, the
evolutionary mechanisms responsible for such robustness remain unclear. Here, we demonstrate
that antagonistic host–parasite interactions can act as a selective pressure driving the emergence of
robustness against gene loss. Using a model of host signaling networks and simulating their
coevolution with parasites that interfere with network function, we find that networks evolve both
redundancy and specific architectures that allow them tomaintain their response despite removal of
proteins.We show thatwhen the parasite pressure is removed, subsequent evolution can lead to loss
of redundancy while architecture-based robustness is retained. Contrary to intuition, increased
parasite virulence hampers evolution of robustness by limiting the generation of population level
diversity in the host. However, when robustness emerges under high virulence, it tends to be
stronger. These findings predict an increased presence of robustness mechanisms in biological
networks operating under parasite interference. Conversely, the presence of such mechanisms
could indicate current or past parasite interference.
Molecular Systems Biology 15 July 2008; doi:10.1038/msb.2008.44
Subject Categories: simulation and data analysis; microbiology and pathogens
Keywords: coevolution; computational methods; host–parasite interaction; robustness; signaling
networks

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence,
which permits distribution and reproduction in any medium, provided the original author and source are
credited. This licence does not permit commercial exploitation or the creation of derivative works without
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Introduction

In several organisms, gene deletion studies suggest a large
fraction of genes to be dispensable (Giaever et al, 2002; Alonso
et al, 2003; Kamath et al, 2003; Wilson et al, 2005). Although
part of this observation stems from genes that are required
under environments not assayed in the lab, a still appreciable
number of genes can be lost with seemingly no phenotypic
effect (Hoffmann, 1991; Joyner et al, 1991; Goldstein, 1993;
Cadigan et al, 1994). Such robustness can result fromduplicate
genes that maintain a functional overlap despite molecular
divergence (redundancy) (Wagner, 2000a; Gu et al, 2003; Papp
et al, 2004) or from system architecture (Edwards and Palsson,
1999; Emmerling et al, 2002). The emergence and main-
tenance of these two mechanisms pose significant challenges
for evolutionary biology (de Visser et al, 2003). Previous work
has shown that genetic mutational load could act as a weak
selective pressure for redundancy and can result in the

emergence and maintenance of robustness under specific
conditions (Nowak et al, 1997; Wagner, 2000b). However, no
explanation currently exists for how evolution can lead to
specific network architectures that are robust against deletion
of parts. Furthermore, although fluctuating environments are
suggested to drive the evolution of robustness in metabolic
networks (Harrison et al, 2007), the relation between
ecological factors and robustness is not addressed in detail.
Among the many potential ecological factors that could

influence the evolution of networks, parasites stand out for
several reasons. Parasite-imposed selective pressure on the
host is usually high, as the fitness reductions that result from
failure to deal with the parasite are often severe. Conversely,
the fitness reductions of parasites that fail to infect, survive
and transmit themselves in and among hosts are even more
severe (Anderson and May, 1991). This strong antagonistic
fitness interaction, combined with the fact that both parasite
virulence and host susceptibility are strongly determined by
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Abstract

A high level of robustness against gene deletion is observed in many organisms. However, it is still not clear which
biochemical features underline this robustness and how these are acquired during evolution. One hypothesis, specific to
metabolic networks, is that robustness emerges as a byproduct of selection for biomass production in different
environments. To test this hypothesis we performed evolutionary simulations of metabolic networks under stable and
fluctuating environments. We find that networks evolved under the latter scenario can better tolerate single gene deletion
in specific environments. Such robustness is underlined by an increased number of independent fluxes and multifunctional
enzymes in the evolved networks. Observed robustness in networks evolved under fluctuating environments was
‘‘apparent,’’ in the sense that it decreased significantly as we tested effects of gene deletions under all environments
experienced during evolution. Furthermore, when we continued evolution of these networks under a stable environment,
we found that any robustness they had acquired was completely lost. These findings provide evidence that evolution under
fluctuating environments can account for the observed robustness in metabolic networks. Further, they suggest that
organisms living under stable environments should display lower robustness in their metabolic networks, and that
robustness should decrease upon switching to more stable environments.
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Introduction

High-throughput single gene deletion studies in several
organisms revealed that a large fraction of genes have little or
no detectable fitness effects when compromised [1–5]. These
observations raise the question of how biological systems can
acquire and maintain such robustness against gene loss. As for any
biological trait, robustness could be adaptive, resulting from direct
selection for it, or non-adaptive, resulting as a byproduct of other
selective pressures [6]. Understanding which of these modes apply
is important both to distill the design principles of biological
systems and to understand how amenable robustness is to
manipulation [7].
Direct selection for robustness against gene loss is expected to be

weak [8], becoming relevant only under high mutation rates
[9,10]. In line with these theoretical findings, empirical analyses
find only limited contribution of gene duplications to the observed
robustness [11–15]. On the other hand, different forms of
robustness are shown to evolve in non-adaptive fashion under
certain conditions. For example, in near-neutral fitness landscapes
mutational robustness can emerge easily [16]. In metabolic
networks, it is argued that properties of enzyme kinetics can
render the systems robust against partial loss-of-function mutations
[17,18]. Moreover, robustness against small mutations is shown to
evolve in gene regulatory networks selected for dynamic stability
[19,20] and robustness against gene deletions is shown to evolve in
signaling networks under parasite interference [21].

It is possible that biomass production and adaptation to multiple
environments act as similarly realistic selective pressures on
metabolic networks that could lead to the emergence of robustness
as a byproduct. The former can drive the emergence of
isoenzymes for increased dosage [22], resulting in a clear case of
functional redundancy mediated robustness. The latter could lead
to multiple pathways, each specializing in processing metabolites
present in one of the multiple environments. These multiple
pathways could compensate for each other, particularly, in rich
media [7]. This scenario is in line with the observation that the
estimated fraction of dispensable genes at both metabolic [23–25]
and genome scale [26] reduces dramatically when multiple
environments are considered. The most recent computational
analysis of metabolic networks from Escherichia coli and Saccharo-
myces cerevisiae finds that, when the effect of deletion is tested in all
possible environments, only half of all reactions determined to be
dispensable under rich media could be considered dispensable for
‘‘real’’ [25]. Further, almost all of the remaining cases can be
explained by recent duplications, horizontal gene transfer events
or pleitropic effects (i.e. compensation by multifunctional enzymes)
[25]. It is important to note that these studies typically judge
dispensability based on stoichiometric approaches such as flux
balance analysis (FBA). By focusing only on lethal knockouts, and
ignoring the fitness effect of non-lethal ones, these approaches
therefore overestimate robustness.
Taken together, the above described studies suggest that

observed robustness against gene deletion in metabolic networks

PLoS Computational Biology | www.ploscompbiol.org 1 August 2010 | Volume 6 | Issue 8 | e1000907
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Chemotaxis in E. coli is based on temporal comparison of 
signal levels (i.e. it requires memory and adaptation)

Chemotaxis in Escherichia coli
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are evolving in such a way to mediate taxis. This behaviour can be
seen from the average time spent by the population at different
parts of the environment (see insets of Figure 1). While un-evolved
bacterial populations are distributed irrespective of stimulus
source, final populations are able to quickly co-localise with it.
This behaviour is mediated by a specific biochemical pathway
dynamics; at steady state, in absence of any signal, the
concentration of activated effector is at a low level and the
bacterium mostly swims without tumbling (see Figure 2 for typical
pathway structure and dynamics, kinetic parameters are shown in
Dataset S1). When the bacterium encounters higher stimulus levels,
the effector is rapidly activated and stays activated as long as the
signal is present, resulting in increased bacterial tumbling. We find
that the qualitative nature of this type of dynamics is independent of
basal stimuli level (data not shown). This non-adaptive dynamics
allow the bacteria to spend more time in regions of high stimulus
and swim straight when the stimulus level decreases. In
evolutionary simulations repeated five times for pathways of 2 to
5 proteins, this mechanism always evolved as the dominant one.
The structures of pathways resulting from these simulations

were diverse (see Dataset S1) indicating that there are several
possible biochemical signalling cascades that can mediate non-
adaptive dynamics. In case of the sample pathway shown in
Figure 2, we find that the receptor acts as a global inhibitor
shutting down effector activity in absence of stimuli. Incoming
signals suppress receptor activity, allowing a build up of effector,
which is involved in a feedback loop with one of the intermediary
proteins, protein one (see cartoon representation in Figure 2). The
other protein acts as a kinase (i.e. activator) on both the receptor
and protein one, thereby ensuring rapid response termination
when the stimulus is removed. This complex pathway structure
and the resulting dynamics allow efficient chemotaxis behaviour as
described above. However, similar dynamics can be achieved with

much simpler circuits containing only two proteins (see Discus-
sion).
Using a simple analytical model, we can capture the movement

of bacteria as mediated by non-adaptive dynamics (see Methods).
This model shows that in simple environments the presented
dynamics should lead to bacteria accumulating approximately
proportionally with the local level of the stimulus. Note that as
long as the stimulus levels are above a certain threshold, this
mechanism is only sensitive to the ratio of the relative levels and
not their absolutely magnitudes. This suggests that an efficient
taxis response can be achieved over a wide dynamic range of
stimuli with pathway-dynamics that does not display adaptation to
stimulus and results in increases in tumbling probability with
increasing stimulus. Both these dynamical features are in striking
contrast to the chemotaxis behaviour of E. coli, where the pathway
ensures decreasing tumbling probability with increasing stimulus
followed by rapid adaptation [5] (see Figure 2).
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Figure 1. Evolution of the taxis response in silico. The average
fitness in an evolving population of virtual bacteria. The inset shows the
time-averaged distribution of positions of the population at generation
0, 200 (corresponding to a fitness of approximately 2.0), and 5,000 (final
generation) as a contour plot. Areas enclosed by darker lines indicate
more time spent there. Note that in these simulations the entire
population starts at grid location (30,30) while stimulus source is fixed
at (50,50).
doi:10.1371/journal.pcbi.1000084.g001
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Figure 2. Adaptive versus non-adaptive pathway dynamics.
Time course of phosphorylated CheY concentration (top), as simulated
by the model presented in [10] and the time course of active effector
concentration for the most frequent pathway in the evolutionary
simulation described in Figure 1 (bottom). The inset shows the cartoon
representation of this pathway. In both simulations, the system is
allowed to pre-equilibrate for 1,000 timesteps. A stimulus of one is then
added at time 1,000 and removed at time 2000. Kinetic parameters for
the shown pathway are given in Dataset S1.
doi:10.1371/journal.pcbi.1000084.g002

Evolution of Taxis Responses in Bacteria

PLoS Computational Biology | www.ploscompbiol.org 3 May 2008 | Volume 4 | Issue 5 | e1000084
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There seem to be no other chemotaxis 
strategy possible!



Simplifying chemotaxis behaviour
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Considering chemotaxis 
strategies (responses)
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Optimal chemotaxis strategies 
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Both strategies work!
But, adaptive bugs are smarter 
and faster...
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How do these strategies work?
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What if sensitivity is the driving 
selective pressure?
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Distinct chemotaxis strategies
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Evolution of chemotaxis!
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Evolution of chemotaxis: 
Thoughts for synthetic biology

A simpler to implement alternative design for 
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good enough for co-localisation with signal)
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competent state, because large fluctuations trig-
gering activation of the positive feedback loop
would become less likely (29).

To test this prediction, we used the rok strain,
which exhibits a twofold increase in comK
mRNA transcription over the WT strain at T0
(Fig. 4, panels in leftmost column) (25, 30), thus
decreasing the noise in ComK protein levels. To
adjust the mean ComK protein level in the rok
strain to approximate that of the WT strain, we
changed the ATG initiation codon of comK to
GTG, thereby reducing its translational efficiency
(9).We verified that themean ComK levels in the
low-noise and WT strains were similar by quan-
tifying the amount of basal ComK–cyan fluores-
cent protein (CFP) fluorescence in bulk culture at
T–0.5 and T0. Despite the slightly higher mean
fluorescence in the low-noise strain, the number
of its competent cells at T2 was dramatically lower
than that in the WT strain, with fewer than 1% of
cells being competent as compared with 15% in
theWTstrain (Fig. 4, panels in rightmost column).
These experiments show that intrinsic noise in
comK expression is responsible for the transitions
to competence and that reducing noise can substan-
tially alter the rate at which those transitions occur.

This result suggests that the noise characteristics
of particular genes may be subject to evolutionary
pressures. Indeed, the fact that the comK gene is
weakly transcribed (12) while having a “strong”

Shine-Dalgarno sequence (GGAGG–7 bp–ATG)
is suggestive. For a desired final percentage of
competent cells, there must be a set fraction of
cells with the level of ComK above a particular
threshold, achievable either byhaving a basalComK
distribution with a low mean and a large variance
or by having a higher mean with a lower variance.
Because of the metabolic cost of maintaining a
larger mean number of proteins, it is plausible that
cells would opt for the former option rather than
the latter, as appears to be the case for comK.

The temporal regulation of comK transcrip-
tion during stationary phase defines when tran-
sitions to the competent state may occur (the
window of opportunity), and intrinsic noise in
comK expression defines the rate at which cells
become competent. Our results imply that noise
properties are subject to evolutionary forces and
suggest how cells might alter those rates to in-
crease fitness. Because noise has been implicated
in a variety of cellular behaviors, such knowledge
can help both in the understanding of natural
regulatory networks (7, 31) and in the synthesis
of artificial networks (4, 32).
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Fig. 4. Noise reduction in comK expression lowers the percentage of competent cells. The leftmost
column depicts comK mRNA distributions predicted by the model for the WT (A), rok (B), and low-
noise (C) strains at T0. The middle column shows ComK protein distributions at T0 assuming a high
rate of translation in the WT and rok strains [(A) and (B)] and a lowered rate of translation in the
low-noise strain (C). The vertical red lines show the predicted threshold beyond which the positive
autoregulatory loop of comK would be activated, resulting in competence [the threshold in the rok
strain changes because of increased gene expression (see SOM)]. The rightmost column shows CFP
fluorescence images from the three strains, taken at T2 and overlaid on DIC images. All three
strains expressed the comK-cfp* fusion, thus fluorescing when competent. The lowest panel in the
column shows a microscopic field for the low-noise strain selected to show one competent cell,
although the frequency of such cells was less than 1%. Scale bars, 4 mm.
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The observation...

Several bacteria display 
distinct phenotypes in an 
otherwise clonal population 

these devices, we can record the growth of
individual bacteria under normal conditions,
expose them to antibiotic treatment, detect
the rare survivors, and analyze the survivors’
history. Even before the antibiotic treatment,
all the observed persisters could be clearly
distinguished from the normal cells by their
reduced growth rate. These single-cell obser-
vations allowed us to describe mathematical-
ly the switching behavior between rapidly
growing normal cells, n, and nongrowing or
slowly growing persister cells, p, in the
framework of a simple two-state model (Fig.
2). Once the mechanism of persistence was
demonstrated at the level of single cells, mea-
surements of the parameters of the model could
be done in batch cultures. The growth-death
rates of the persisters and the normally growing
cells were characterized in this model by the
constants !p and !n, respectively. The cells
switched from the n state to the p state with a
constant rate a or from the p state to the n state
with a constant rate b.

We first chose to study hip mutants with
the hipA7 allele, isolated in a pioneering
work by Moyed and colleagues (5). Interest-
ingly, the persistence of the hipA7 allele after
ampicillin exposure was shown to be linked
to persistence in many other stresses (6, 11).
The killing curve of these mutant cells (Fig. 1A)
is well described by double-exponential kinet-
ics: The majority of the population is charac-
terized by a fast killing time (25 min), whereas
the subpopulation of persisters dies off over a
much longer characteristic time (6 hours) (12).
A good fit to experimental data is obtained by
the two-state model presented in Fig. 2.

For single-cell measurements, the hipA7
bacteria are first grown in a microfluidic device
under the microscope on Luria-Bertani Lennox
medium (LBL) (Fig. 1C) (12). During growth,
the descendants of each bacterium form a sep-
arate linear microcolony (Fig. 1, C to E). By
using time-lapse microscopy and measuring the
length of newly formed linear microcolonies,
we derived growth rates of the progeny of
individual cells. The average growth rate of E.
coli in our devices was the same as that for
batch cultures. After several cell divisions, am-
picillin was added to the medium, and the death
of cells, accompanied by lysis, was easily ob-
served (Fig. 1F). After 5 hours of ampicillin,
killing slowed, and ampicillin was cleared from
the device with fresh LBL (Fig. 1G). After the
removal of ampicillin, rare bacteria, which sur-
vived, started growing and dividing again (Fig.
1, G and H): These were identified as the
persister cells. The persistence phenotype was
not due to spatial inhomogeneities inside our
devices: The locations of persisters showed no
pattern, and these cells were often found in
close proximity to nonpersister cells. Following
the behavior of those cells back in time (movie
S1) (12), we observed that they differed in their
growth rate from the majority of the population

before the exposure to antibiotics. Persister
cells, which seemed to be in an arrested growth
state, could spontaneously switch to fast growth
and generate a population that is sensitive to the
antibiotic (12) (fig. S1). We thus conclude that
persistence in the hipA7 population is linked to
an inherent heterogeneity of growth rates in the
bacterial population.

We have established the following prop-
erties of hipA7 persisters, characteristic of
what we call type I persisters:

1) Type I persisters constitute a preexist-
ing population of nongrowing (!p " 0) cells
that are generated at stationary phase.

2) Type I persistence is characterized by a
negligible spontaneous switching rate from n to

p during exponential growth (a " 0) (13). In
batch culture (Fig. 3B), the number of persister
cells is directly proportional to the number of
stationary phase cells inoculated into the cul-
ture, consistent with recent observations (14, 15) .

3) Type I persisters inoculated into fresh
medium from stationary phase switch back to
growing cells with a characteristic extended
time lag. The hipA7 population consists of two
distinct subpopulations, each characterized by a
different time constant for the exit from station-
ary phase (Fig. 3A). The apparent lag time for
the persister population is the inverse of b, the
switching rate from p to n. We measured b by
plating an overnight culture of the hipA7 mutant
on LBL agar plates and monitoring the appear-

Fig. 1. Growth of hipA7 bacteria. (A) Killing
curves of wild-type and hipA7 mutant cells.
Black symbols and dashed curve indicate
wild type (wt); red symbols and solid curve,
hipA7 mutant. The hipA7 survival fraction
shows two time scales and is fitted (red
dashed line) by using the parameters of Fig.
2. The line fitting for the wild-type data is
obtained by allowing three subpopulations
(n, pI, and pII) with the parameters of Fig. 2.
(B) Scheme. The cells are trapped at the
interface between a transparent membrane
and a thin layer of PDMS patterned with
narrow grooves. The enlargement of the
groove pattern was imaged with the use of

phase-contrast microscopy. (C to H) Time lapse of hipA7 cells expressing yellow fluorescent
protein. Times from t # 0 are indicated in hours:min. (C to E) Bacteria taken from an overnight
culture are exposed to growth medium (GM1) and divide on narrow grooves, thus forming strings
of cells originating from the same cell. (F) Same field of view after exposing the cells to ampicillin
(denoted by A). Only persister cells remain. (G and H) Same field of view after removal of the
ampicillin by washing with growth medium (GM2). The red arrow points to the location of a type
I persister bacterium. (I) The length of the lineages of several hipA7 cells is monitored during GM1,
A, and GM2 time periods. Individual cells are plotted as different colors. Type I persister cells do not
grow during the GM1 and A periods. a.u., arbitrary units.
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How? The Molecular Basis...
1. Noise

Cell 135, October 17, 2008 ©2008 Elsevier Inc. 217

Noisy Bugs
The !rst attempts to characterize stochastic gene expres-
sion were born from experiments in synthetic biology in which 
experimenters found that noisy behavior in gene expression 
was interfering with the operation of engineered genetic cir-
cuits. One example is the “repressilator,” a synthetic network of 
repressors that was capable of producing oscillations in gene 
expression (Elowitz and Leibler, 2000). The authors found that 
the oscillations were subject to marked "uctuations in their 
period and magnitude and conjectured that stochastic effects 
in gene expression were causing these effects. In another 
study explicitly aimed at controlling "uctuations, Becskei and 
Serrano (2000) showed that engineering a circuit with nega-
tive feedback could reduce cell-to-cell variability in expression. 
Although these experiments showed that noise in gene expres-
sion was important and could even be controlled, the molecu-
lar basis for the observed variability remained unclear.

The !rst experiments to explore the causes of stochastic gene 
expression were the landmark studies of Elowitz et al. (2002) and 
Ozbudak et al. (2002). Elowitz et al. introduced the concepts of 
extrinsic and intrinsic noise in gene expression (analyzed math-
ematically by Swain et al., 2002). In their experiments, Elowitz et 
al. quanti!ed the variability in the expression from a promoter in 
E. coli by introducing two copies of the same promoter into the 
genome of E. coli, one driving the expression of cyan "uorescent 
protein (CFP) and the other driving the expression of yellow "uo-
rescent protein (YFP) (Figures 1A and 1B). In this setup, extrinsic 
"uctuations are those that affect the expression of both copies 
of the gene equally in a given cell, such as variations in the num-
bers of RNA polymerases or ribosomes. Intrinsic "uctuations 
are those due to the randomness inherent to transcription and 
translation; being random, they should affect each copy of the 
gene independently, adding uncorrelated variations in levels of 
CFP and YFP levels (Figure 1C). They found that both sources 

of noise can be signi!cant depending on 
the promoter. Later time-lapse measure-
ments showed that in bacteria, the time 
scale for intrinsic "uctuations is less than 
9 min, whereas extrinsic "uctuations 
exert their effects on time scales of about 
40 min, or roughly the length of the cell 
cycle (Rosenfeld et al., 2005).

Ozbudak et al. (2002) observed that 
variability in the expression of a gene 
expressing GFP driven by an inducible 
promoter in B. subtilis depended on the 
underlying biochemical rates of tran-

scription and translation. In these experiments, transcription 
rates were controlled by varying the level of induction, and the 
translation rate was altered by introduction of mutations into 
the ribosomal binding site. This veri!ed a stochastic theory 
of intrinsic noise they had developed predicting how noise 
in gene expression would change as these parameters were 
altered (Thattai and van Oudenaarden, 2001) (Figures 2A and 
2B). In particular, the theory predicted that noise (measured 
by the standard deviation in protein expression level divided 
by the mean) would depend inversely on the rate of transcrip-
tion but would not depend on the rate of translation. This is 
because proteins are produced in translational “bursts” from 
individual transcripts; the concept of bursts in gene expres-
sion continues to play an important role in current research, 
especially in higher eukaryotes.

Recently, a set of exciting single-molecule experiments have 
observed translational bursts in individual living bacteria. To 
count the number of proteins per cell, Cai et al. (2006) used two 
methods: one involving micro"uidics, in which they quanti!ed 
the number of beta-galactosidase enzymes in a cell by moni-
toring its enzymatic activity, and one involving direct visualiza-
tion of single YFP molecules tethered to the cellular membrane 
(Yu et al., 2006). Both studies showed that proteins were syn-
thesized in rapid, burst-like fashion.

Another study (Golding et al., 2005) used the MS2-GFP 
method (Bertrand et al., 1998; Beach et al., 1999), which 
allows one to monitor the transcription of individual mRNA 
molecules in real time. This is accomplished by introduction 
of a repeated sequence motif into the 3  untranslated region 
of the mRNA, to which a fusion of the MS2 coat protein and 
GFP binds, thus rendering the mRNA molecule "uorescent. 
According to the model presented in Figure 3A, one would 
expect that mRNA molecules are produced at a steady rate 

Figure 1. Intrinsic and Extrinsic Contribu-
tions to Noise in Gene Expression
(A) A "uorescence image of individual E. coli dis-
playing marked cell-to-cell variability in the ex-
pression of two identically regulated "uorescent 
proteins.
(B) Schematic depiction of the temporal behav-
iors of extrinsic noise (upper) and intrinsic noise 
(lower).
(C) Expected cell-to-cell variations when "uctua-
tions are intrinsic, extrinsic or both.
(A) and (B) are adapted from Elowitz et al., 2002.
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according to the statistics of a Poisson process. The authors 
found, however, that the mRNA molecules were themselves 
produced in transcriptional bursts, as if the gene itself was 
randomly switching back and forth between transcriptionally 
active and inactive states (Figure 3B). This !nding mirrors 
results obtained for eukaryotes described below. It would 
be interesting to combine these different measurements of 
the dynamics of individual mRNAs and proteins, given the 
role that competition between translation and mRNA deg-
radation may play in stochastic gene expression (Yarchuk 
et al., 1998).

Eukaryotes and the Burst Hypothesis
After these experiments in bacteria, researchers began to 
investigate stochastic gene expression in eukaryotes, initially 
focusing on yeast. Almost immediately, several reports seemed 
to indicate that the sources of variability in gene expression in 
yeast are different from those in bacteria in a number of impor-
tant ways (Becskei et al., 2005; Blake et al., 2006; Blake et al., 
2003; Raser and O’Shea, 2004). These studies all examined 
the relationship between the mean level of expression and 
the variation about that mean, a relationship that is in theory 
qualitatively different depending on the sources of noise. In 
all of these studies, the relationship predicted by the simple 
model in Figure 2 was insuf!cient to explain the experimental 
observations. These observations were, however, compatible 
with models of transcriptional bursts in which the gene itself 
randomly transitioned between states of transcriptional activ-
ity and inactivity (Figure 3B). Such models of transcriptional 
bursting add another important source of stochasticity beyond 
random events in transcription and translation, which have 
now been analyzed theoretically in some detail (Friedman et 
al., 2006; Karmakar and Bose, 2004; Kepler and Elston, 2001; 
Pedraza and Paulsson, 2008).

That such models are required to explain eukaryotic data but 
not most prokaryotic data (Cai et al., 2006; Maamar et al., 2007; 
Yu et al., 2006), with an important exception (Golding et al., 
2005), strongly suggests that some regulator of gene expres-
sion speci!c to eukaryotes is responsible. The most likely can-

didate for this is chromatin remodeling: 
when the surrounding chromatin is in an 
open, acetylated state, the gene is able 
to transcribe relatively freely, whereas 
when chromatin is in a condensed state, 
transcription is repressed. Although there 
is still no direct evidence that chromatin 
remodeling is responsible for stochastic 
changes in gene activity, several stud-
ies have tried to link chromatin-related 

events to stochastic gene expression by indirect means. These 
include positional effects like measuring correlations between 
proximally located genes (Becskei et al., 2005; Raj et al., 2006) 
or altering the behavior of chromatin-remodeling agents (Raser 
and O’Shea, 2004; Xu et al., 2006). However, global studies of 
noise in yeast (Bar-Even et al., 2006; Newman et al., 2006) have 
shown that the presence of chromatin-remodeling complexes 
is neither necessary nor suf!cient for the expression of a gene 
to be noisy; also, factors such as the location and number of 
transcription factor binding sites can control noise (Murphy et 
al., 2007).

In yeast, noise in gene expression is primarily extrinsic in 
origin (Becskei et al., 2005; Colman-Lerner et al., 2005; Raser 
and O’Shea, 2004; Volfson et al., 2006), resulting in correlated 
"uctuations between different genes. Sources identi!ed thus far 
for this extrinsic noise are cell size (Raser and O’Shea, 2004; 
Newman et al., 2006; Volfson et al., 2006), variations in common 
upstream factors (Becskei et al., 2005; Volfson et al., 2006), and 
chromosomal location (Becskei et al., 2005); in contrast, extrin-
sic variability in prokaryotic gene expression is thought to stem 
mostly from variations in upstream factors (Elowitz et al., 2002). 
There is some debate as to the role of differences in cell cycle 
and cell size, with some data (Raser and O’Shea, 2004) showing 
that extrinsic variability remains even after controlling for these 
variables, whereas other data indicate that a stringent analysis 
of size and shape by "ow cytometry can account for most of 
the extrinsic noise (Newman et al., 2006). Generally, one of the 
dif!culties in studying extrinsic variability is its catchall nature: 
the lack of any speci!c mechanism makes its analysis rather 
phenomenological. Although there is some knowledge of the 
time scales over which extrinsic noise operates (Rosenfeld et 
al., 2005) and theoretical analyses of the effects that it might 
have (Shahrezaei et al., 2008; Paulsson, 2004), understanding 
extrinsic noise remains an unresolved problem in the !eld.

Higher Eukaryotes: Noisier Than Expected
Meanwhile, work has begun on systematically examining cell-to-
cell variability in gene expression in higher eukaryotes. A priori, 
one might expect that higher eukaryotes, with their larger size and 

Figure 2. Noise in Prokaryotic Gene Expres-
sion Depends on the Rates of Transcription 
and Translation
When the transcription rate is high, variability in 
protein levels is low (A), but when the transcription 
rate is lowered and the translation rate is raised, 
gene expression is far noisier (B), even at the same 
mean, as shown in Ozbudak et al. (2002).

Noise is inherent in gene 
regulatory networks. 
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numbers of molecules, might exhibit less variability than prokary-
otes and yeast. On the other hand, the prevalence of transcrip-
tionally silenced heterochromatin would argue that slow, random 
events of gene activation and inactivation would lead to much 
larger !uctuations than in unicellular organisms. As it happens, 
the latter is the case, with a growing body of evidence that !uc-
tuations in higher eukaryotes can be remarkably large.

Interestingly, the study of expression variability in higher 
eukaryotes began well before the recent heightened interest in 
stochastic gene expression. Beginning with the aforementioned 
work of Ko et al. (1990), several other reports indicated that gene 
expression in mammalian cells was variable, stemming from 
short, rare events of active transcription (Ross et al., 1994; New-
lands et al., 1998; Takasuka et al., 1998; White et al., 1995).

Many of these early experiments were limited by the dif"cul-
ties inherent to measuring gene expression in single cells in 
higher eukaryotes. One problem is sensitivity: owing to their 
large cellular volumes, even moderately expressed !uorescent 
proteins can be dif"cult to detect. Another problem is the lack 
of tools available to manipulate these organisms genetically. 
To circumvent these problems, researchers have come up with 

many new ways of assaying gene expression at the single-cell 
level to measure cell-to-cell variability.

One approach is to measure mRNAs rather than proteins. 
For instance, utilizing the MS2-GFP method of mRNA detection 
(Beach et al., 1999; Bertrand et al., 1998), Chubb et al. (2006) 
showed that a developmental gene in Dictyostelium discoideum 
is transcribed in a pulsatile fashion, directly demonstrating the 
burst hypothesis by watching mRNAs accumulate and dissi-
pate from active and inactive sites of transcription in real time. In 
comparison with the less intense bursts observed with a similar 
approach in bacteria (Golding et al., 2005), the authors found that 
the bursts were less frequent but longer lasting. In contrast with 
earlier bacterial models, this shows that bursts in gene expression 
are the primary intrinsic cause of cell-to-cell variability.

One can also measure mRNA numbers in single cells across 
a population using variants of !uorescence in situ hybridiza-
tion (FISH) capable of detecting individual mRNA molecules 
(Femino et al., 1998; Raj et al., 2006, 2008). Raj et al. (2006) 
combined single molecule FISH with statistical analysis to 
show that individual mammalian cells transcribed a stably 
integrated transgene in infrequent but potent bursts, result-
ing in large cell-to-cell variations in mRNA number (Figures 
3C and 3D) that correlated with the presence or absence of 
active sites of transcription (seen also by Voss et al., 2006). 
These bursts were correlated between genes that were located 
proximally to each other but not between genes that were dis-
tally located, providing another clue that chromatin remodeling 
may be responsible for genes transitioning between an active 
and inactive state: “opening” of the chromatin surrounding one 
gene is likely to open chromatin for neighboring genes, leading 
to correlations in their expression, whereas distant genes are 
not affected in this coordinated manner, resulting in uncorre-
lated expression. This behavior is also seen in globin expres-
sion (de Krom et al., 2002) and shows that genomic position 
can be important in interpreting the concepts of intrinsic and 
extrinsic noise.

Quantitative single-cell RT-PCR methods have been used 
to obtain cell-by-cell counts of endogenous mRNAs, thus 
circumventing issues associated with generating trans-
genic cell lines and organisms. By simultaneously measur-
ing the numbers of "ve transcripts in individual pancreatic 
islet cells, Bengtsson et al. (2005) showed that the distribu-
tions of these mRNAs across the population were heavily 
skewed, as in Figure 3D. Moreover, they measured correla-
tions in the !uctuations in the expression of these genes, 
"nding that two functionally related genes were highly corre-
lated whereas the rest were uncorrelated, perhaps pointing 
to the existence of common regulators for the two genes. 
Such "ndings highlight the potential use of stochastic gene 
expression in uncovering the mechanisms of transcriptional 
regulation. One dif"culty with this approach is the rigorous 
set of controls required to calibrate RT-PCR results in molec-
ular units, a problem that can be obviated through the use 
of so-called “digital” RT-PCR. This method, in which cDNA 
reverse transcribed from an individual cell is fractionated 
into enough individual PCR reactions that each reaction will 
contain either 0 or 1 cDNAs, has been used to examine the 
expression of the PU.1 transcription factor in both hemato-

Figure 3. The Contribution of Transcriptional Bursts to Cell-to-Cell 
Variability
(A) Transcription without bursts with a relatively small amount of noise.
(B) Bursts in transcription can cause signi"cantly higher variability, even when 
producing the same mean number of transcripts.
(C) In situ detection of individual mRNA molecules reveals large cell-to-cell 
variability in mammalian cells.
(D) Experimental histogram of mRNA numbers. The gray dashed line depicts 
the theoretical distribution one would expect in the absence of transcriptional 
bursts.
(C) and (D) are adapted from Raj et al., 2006.

Noise is inherent in gene 
regulatory networks. 
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The Molecular Basis...
2. Bistability

ideal model system that is well suited to study the heritability
of an entire dynamic gene expression state.

In this work, we find that not only is the epigenetic
phenotype itself heritable, but that the stability of this
phenotype is likewise a heritable quantity. In other words,
when cells divide, the nascent daughter cell assumes both the
expression state of the mother cell as well as its tendency to
switch epigenetic states at a similar time in the future. This is
surprising, especially considering that individual cells viewed
outside their genealogical context appear to switch com-
pletely at random. We resolve this apparent contradiction
using a simple stochastic model.

Results

Heterogeneous Populations Are Generated from Single
Progenitors that Spontaneously Switch between Two
Phenotypes

We first set out to quantify, using fluorescence microscopy,
the infrequent switching events that occur at random times.
All experiments began with a single cell confined between a
cover slip and a thick agar pad. Over a period of about 920
min (.15 h) each cell grew and divided to eventually form a
small colony of 50–100 cells. Throughout the measurement
period, these cells diverged in behavior, with some increasing
in fluorescence and others decreasing. We repeated this
process with more than 100 progenitor cells, so in sum our
data represent many thousand single-cell trajectories.

We present two examples of the experimental procedure in
Figure 1. In Figure 1A, an initially bright cell develops into a
small colony with distinct subpopulations. The dim cells in
the lower subpopulation continue to diminish in fluorescence
with each successive cell division as the remaining molecules
of green fluorescent protein (GFP) dilute. In Figure 1B, an
initially faint cell likewise gives rise to a variegated colony
with cells both dim and bright. Together, these two processes
generate a broad bimodal steady-state distribution.

Individual Cells Have Exponentially Distributed Switching
Times
Narrowing our focus to initially OFF progenitor cells, we

allowed each to grow, divide, and give birth to other initially
OFF cells. We then recorded instances when cells switched
into the ON state (Figure 2A and Video S1). Because cellular
auto-fluorescence is uniformly small throughout the popula-
tion of OFF cells, these fluorescing events were generally
distinguished unambiguously from background fluctuations.
Using these data, we generated for each colony a family tree
where the detailed genealogical relationships and gene-
expression histories of corresponding family members are
shown (Figure 2B).
Because cells are continuously born throughout the

experiment, we aligned them in silico so that their birth
times were identical. In this context, it is natural to define
the marginal switch time, sX, a parameter that describes the
interval between the birth of a cell X and the moment it
eventually becomes fluorescent (Figure 2C). We normalized
each measurement according to its expected likelihood of
being observed (see Figures S4 and S5, Text S3) to account
for any biases caused by the cells’ exponentially dividing
throughout our measurement period. The resulting data fit
well to an exponential curve with an effective transition rate
of 0.12 switches per generation (Figure 3A, cyan line). The
slight discrepancy between data and exponential fit is likely
the result of some cells growing out of the focal plane. The

Figure 1. Cells Switch between Expressing and Nonexpressing States

Images are phase contrast micrographs (black and white) overlaid with
background-subtracted fluorescent signal (purple).
(A) Over 750 min, or between 4 and 5 generations, an initially ON cell of
strain MA0188 develops into a small variegated colony with subpopu-
lations of ON and OFF cells.
(B) An initially OFF cell likewise grows into a mixed colony with both ON
and OFF cells. The sharp interface between ON and OFF cells in both
(A,B) indicates that cell-cell communication does not play a major role in
defining cell expression state.
a.u., arbitary units.
doi:10.1371/journal.pbio.0050239.g001
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Single-Cell Heritable Stochastic Switching

Author Summary

When cells divide, not only DNA but an entire pattern of gene
expression can be passed from mother to daughter cell. Once cell
division is complete, random processes cause this pattern to
change, with closely related cells growing less similar over time.
We measured inheritance of a dynamic gene-expression state in
single yeast cells. We used an engineered network where individual
cells switch between two semi-stable states (ON and OFF), even in a
constant environment. Several generations after cells have physi-
cally separated, many pairs of closely related cells switch in near
synchrony. We quantified this effect by measuring how likely a
mother cell is to have switched given that the daughter cell has
already switched. This yields a conditional probability distribution
that is very different from the exponential one found in the entire
population of switching cells. We measured the extent to which this
correlation between switching cells persists by comparing our
results with a model Poisson process. Together, these findings
demonstrate the inheritance of a dynamic gene expression state
whose post-division changes include both random factors arising
from noise as well as correlated factors that originate in two related
cells’ shared history. Finally, we constructed a model that
demonstrates that our major findings can be explained by burst-
like fluctuations in the levels of a single regulatory protein.

A bistable gene 
regulatory network 
gives rise to 
stochastic switching  
at population level. 



Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523-530 (2004).

The Explanation...
Beneficial heterogeneity:
Under fluctuating environments 
stochastic switching can provide 
an advantage to the population.  
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Figure 2.—Beneficial heterogeneity. Our central result is
that transitions into the unfit state, at some rate k0 ! 0, can
enhance cell fitness in certain circumstances. This can be seen
by exploring the behavior of the fitness, f(k0, k1, "#), as the
cell response rate, k1, and the fitness penalty, "#, are varied.
The hatched region shows, for growth in periodic environ-
ments, those parameter values for which k0 ! 0 produces a
fitness increase relative to k0 $ 0. The cross-hatched region
shows, for growth in Poisson environments, those parameters
values for which a fitness increase of at least 0.01 is attained
for some k0 ! 0. This region was determined by performing
Monte Carlo simulations (see Figure 4). We see that heteroge-
neity enhances fitness over a larger parameter range in a
periodic environment than in a Poisson environment. Note
that, if the cell response rate is sufficiently high (k1 ! 1.4),
then k0 $ 0 is always preferred.

cumstances under which transitions into the unfit state
enhance fitness. We see that, for k1 ! 1.4, k0 $ 0 is
always the optimal solution. For 1.4 ! k1 ! 1, the situa-
tion becomes more interesting. For very low penalties,
it still does not pay to maintain an unfit subpopulation

Figure 3.—Growth in periodic environments. (A) We plotin anticipation of environmental changes; for extremely
the fitness, f, as a function of the transition rate into the unfithigh penalties, cells that transition to the unfit state
state, k0, for k1 $ 0.2, "# $ 10. This allows us to determineare lost almost immediately, so it becomes wasteful to the optimal transition rate k0

opt that maximizes fitness. (B) k0
opt

maintain an unfit subpopulation; for intermediate pen- is shown for various values of k1 and "#. Note that, beyond
alty values, however, heterogeneity is actually preferred. some value of k1, k0

opt $ 0. (C) The fitness f obtained at k0 $
k0

opt (dotted line) is compared with that obtained at k0 $ 0As the response rate drops even lower, for k1 % 1, hetero-
(solid line). The two curves are identical beyond the point atgeneity is always preferred even at very low or high
which k0

opt $ 0; the curves diverge for those parameters k1 and
penalties. "# that are hatched in Figure 2. The fitness enhancement is

We can now ask how much benefit may be derived considerable for high values of the penalty "#, but negligible
for low values.from making the best possible choice of k0 (Figure 3A).

That is, given k1 and "#, we can ask which optimal
transition rate k0

opt maximizes fitness (Figure 3B) and
compare the fitness attained at this optimal value (Fig- passive bacterium (k0 $ 0, k1 $ 0, f $ 0.5). Of course,
ure 3C, dotted line) to that attained at k0 $ 0 (Figure it is because the unfit state will soon become the fit state
3C, solid line). We again see that, for k1 ! 1.4, k0 $ 0 that such transitions enhance fitness.
is preferred, while for k1 % 1, transitions into the unfit Growth in stochastic environments: In the simplest
state are always beneficial. However, the benefit in the case, we can model environmental transitions as Poisson
latter case becomes more significant at higher penalty processes of rate 1/T, occurring with a constant proba-
values. It is interesting that, in the limit k1 → 0, a bacte- bility per unit time. The time t spent in a given state

will then be exponentially distributed, with mean valuerium that makes transitions purely into the unfit state
(k0 ! 0, k1 $ 0, f ! 0.5) has a fitness advantage over a !t" $ T and relative standard deviation &t $ 1. More
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growth rate differences between these states under dif-
ferent environmental circumstances (Hernday et al.
2002). For example, during urine flow, pilus-expressing
cells are able to survive by anchoring themselves to uri-
nary tract surfaces, while cells without pili are flushed
out. The latter cell type can be described as having a
negative growth rate, a constant probability per unit
time of being removed from the cell population. In the
absence of urine flow, pilus-expressing cells are able to
harvest resources less efficiently and may also become
targets of an immune response; such cells then have
the lower, possibly even a negative, growth rate.

To introduce these environmental influences into our
model, we assume that the environment can cycle be-
tween two different states, ea and eb; this can be achieved
by alternating between glucose-rich and lactose-rich me-
dia in the diauxie experiment or between the presence
and absence of urine flow for bacteria colonizing the
urinary tract. In environmental state ea, cellular state ca

is most fit, with a similar correspondence between states
eb and cb. We now make the simplifying assumption that
the situation is completely symmetric under the inter-
change of the two environmental states; that is, when
the state of the environment flips, the two cellular states
simply exchange their properties. Under a certain envi-
ronmental condition, one of the cellular states will then
be the fit state labeled c1, with growth rate !1, and the
other will be the unfit state labeled c0, with growth rate
!0 " !1; the Poisson transition rate from c0 to c1 is k1,
and that from c1 to c0 is k0 (Figure 1A). (In laboratory
experiments under fixed conditions, a population with
k1 # 0 but k0 $ 0 would eventually become homogenous,

Figure 1.—A stochastic bacterial population. (A) Each cell while one with k1 # 0 and k0 # 0 would remain heteroge-
can be in one of two states, ca and cb; correspondingly, the nous. We therefore loosely use the term “heterogenous”
environment can switch between two states ea and eb. In environ- to mean “k0 # 0”.)mental state ea, cell state ca is the fit state, labeled c1 (open

The assumption of symmetry makes our analysis simplerbox), and cell state cb is the unfit state, labeled c0 (shaded
to present, but our main results will hold even in thebox); when the environmental state flips, the two cell states

exchange their properties. The growth rate of the fit state is case of asymmetric parameters. Potentially more serious
!1, and that of the unfit state is !0 " !1; Poisson transitions limitations of the model are the following. First, we have
into the fit state occur with rate k1, and those into the unfit state assumed that the duration of a cellular transition is muchoccur with rate k0. Typically, bacteria will tend to transition into

shorter than the time separation between transitions.the fit state, so k1 will usually be higher than k0. (B) Growth
In reality, cellular transitions do cost time and energy;in a periodic environment. The environment cycles between

the two states, spending a time T $ 1 in each state. The however, for low enough transition rates, these costs
fraction f1 of cells in the fit state is plotted as a function of can be ignored. This is a reasonable description of actual
time, as predicted by Equation 4, for k0 $ 0.5, k1 $ 1.0, %! $ systems: during pili phase variation, for example, transi-1.0. While the environment is fixed, more cells tend to transi-

tions occur about once per 105 generations per cell, buttion into than out of the fit state, so f1 increases. When the
are executed within a single generation. We must simplyenvironment flips, cells that were in the fit state now find

themselves in the unfit state, so f1→(1 & f1). After this event, be careful, during our analysis, not to let the switching
cells again begin to switch into the newly fit state, and so on. rates take on arbitrarily high values. Second, we have
(C) Growth in a stochastic environment. The time spent by assumed that the rate of growth in any particular cellularthe environment in a given state is now exponentially distrib-

state is independent of the number of cells in that oruted, with mean value T; this results in several brief environ-
in any other state. This assumption breaks down, formental epochs, interspersed with a few periods in which the

environment is more persistent. We generated the time course example, during growth under metabolite-limited con-
shown using a Monte Carlo simulation, then used Equation ditions in which the different subpopulations compete
4 to determine the time evolution of f1, for the same parameter with each other for nutrients (Smith and Waltmenvalues as in Figure 1B. We see that cells are able to attain

1995); similarly, it does not apply when the subpopula-much higher fitness values during the extended environmen-
tions cooperate with each other in any way, such astal periods than in a periodic environment.
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Correlation does not imply causation

Is fluctuating selection sufficient 
for the evolution of bistable and  
noisy gene regulation in 
individuals?



In silico evolution under 
fluctuating selection

continue ad infinitum

Evolving parameters;
a, b, N, and KD
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You need a model of an individual

Cells adapt to fluctuating environments

mean fitness over population and generation

v = 0.5 v = 0.1

v = 0.05
v = 0.01

Deterministic
Model

Stochastic
Model 

Evolving parameters;
a, b, N, and KD

Starting with a linear system;
a=b=1, N=0, and KD=50



Cells adapt to fluctuating environments

- Under all rates of environmental switching (ES) analysed, 
cells showed some level of adaptation 

- Stochasticity in gene regulation improved adaptation 
only under intermediary rates of ES

- Higher nonlinearity and bistability in gene regulation 
evolved only in the stochastic phenotype model and only 
under those rates of ES where stochasticity was found to 
be beneficial



How can we understand these results?

Why did nonlinearity and bistability 
evolve in these simulations? and why 
did it evolve only under a certain 
range of environmental fluctuations?



In silico evolution under 
fluctuating selection

continue ad infinitum

Produce lots of protein

Produce very little protein

Produce lots of protein

Switch phenotype as 
fast as possible

via mutations, 
OR ?



Selection for increased evolvability

Switch phenotype as fast as 
possible



Cells evolved increased evolvability

A model with deterministic environment; Epochs of 10 
generations.

Adaptation time is defined as “number of generations 
for mean population fitness to reach above 0.7”. 



Stochastic Switching 
As A Byproduct Of

Evolution of Evolvability

- Fluctuating environments can select for the evolution of 
higher evolvability 

- Specific nonlinear gene regulatory dynamics underpin 
higher evolvability at molecular level 

- In the presence of noise, increasing nonlinearity further 
enhances diversity and gives rise to bistability

- Bistability and noise can give rise to stochastic switching, 
which can immensely enhance adaptation time 



LEARNING FROM EVOLUTIONARY PROCESSES 

Plasticity
Degradation as a tool to regulate response dynamics

Innovation 
Use of evolutionary simulations as design tools: Functional continuity with 

structural change

Robustness
Fluctuations as driver and maintainer of structural features underlying 

robustness to deleterious mutations

Evolvability
Nonlinearity and noise as potential sources of faster adaptation



Science Strategy

http://people.ex.ac.uk/oss203/

OSS lab

Hiroyuki Kuwahara
Carnegie Mellon University

Synthetic Biology 
Flashlight Sandpit 
For Young Academics

Open postdoc position!
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Richard Goldstein
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Evolving Controllers and 
Controlling Evolution

Persisters in 
Campylobacter



respo
nsesSingle two-state protein motifs as 
building blocks of response dynamics



Mathematics to the rescue
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Sensitivity as exaptation for adaptation!
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What previous works have missed

Tumbling is not instantaneous, or it was not always!
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Replaying the tape of 
evolution. 

DO EVOLUTIONARY 
PROCESSES LEAVE 
FINGERPRINTS? 424

METABOLIC NETWORKS: WHY HUB 
MOLECULES? WHY SCALE-FREE? WHY 
ROBUST?

• Toy model of enzymes and metabolites, 
with enzyme trade-off for specificity/rate.

• Evolve under selection for biomass 
production (fixed/fluctuating selection)

• Networks evolved under fixed selection 
display hub molecules and scale-free 
connectivity

• Networks evolved under fluctuating 
selection display increased robustness

Redundancy in metabolic networks is 
an evolved response to fluctuating 
environments

=> bugs from stable environments 
should be less versatile


