

SL N	Immary of exometabo ot the maximal efficie	lomics:	ise 🖨
		Flux	E.
	Flux	percentage of input	
	J _{Biomass}	6	
	J _{co2} (offgas)	20	
	J _{ethanol} (exometabolome plus		
	off gas)	74	
	J _{Acetate} (exometabolome)	0	
	J _{Glycerol} (exometabolome)	2	
	J _{Acetaldehyde} (exometabolome)	0	
	J _{Trehalose} (exometabolome)	1	
	Westerhoff and friends, Oxford, 29100712	Engineering set-sustaining networks	$\rightarrow \bigcirc$

Flu	x	Flux (mmoles C/h/g dryweight)	Flux percentage of input
J _{Bic}	mass		6
J _{co}	2 (offgas)		20
J _{ett}	anol (exometabolome plus		
ofi	gas)		74
JAC	_{ttate} (exometabolome)		0
J _{GI}	_{cerol} (exometabolome)		2
JAC	taldehyde (exometabolome)		0
	(exometabolome)		1

ne	Regulation h etwork equall	iomogeneo y)?	ous (the entire
	Nitrogen starvation	Ph	
	нк	1.0	Norl
	PGI	0.8	
and the second	PFK	0.4	
	ALD	1.1	
	TPI	0.1	
	GAPDH	0.7	
	PGK	0.0	
	PGM	1.0	
	ENO	0.4	
	PK	1.4	
	PDC	2.3	
	ADH	1.7	
	lesterholf and hiends, Oxford, 20100712		Inteering self-sustaining networks

Regulation u propeller en	understood zymes and	l: I follower	S nise
Gic out ATP Gic in ADP-AT ATP	Nitrogen starvation	Ph	A
ADP ATP	нк	1.0	
ATP ADP	PGI	0.8	
FIEDP	PFK	0.4	
	ALD	1.1	
NAD Glycerol BPG	TPI	0.1	
N-ADP N-ATP	GAPDH	0.7	
2 ADP	PGK	0.0	
2PGA	PGM	1.0	
PEP ADP	ENO	0.4	
PYR	PK	1.4	
	PDC	2.3	
A ADD A TP NAAD	ADH ANDERNOM	1.7	
Westerhoff and friends, Oxform	4, 20100712	Engineering set-sustaining netwo	

L. lactis PTS into yeast (<i>in silico</i>)				
Constitution for Constitution, Nolesso, and Cohol Questity Values 2 The Section Section 2000 Note And Cons Concentrations, Volumes, and Global Quantity Values_2	Steady state, but			
	An unstable one			
0-3 	Exploreing of satisfing formers:			

