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Randomness at the Molecular Level



Stochastic Influences on Phenotype

Fingerprints of identical twins Cc, the first cloned cat and her genetic mother

J. Raser and E. O’Shea, Science, 1995. J. Raser and E. O’Shea, Science, 1995.
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variability in gene expression
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Elowitz et al, Science 2002




Capturing

Randomness in Gene

—Xpression Models

protein i

.

Determi

nistic model

= —y[mRNA] + kr

Yo d[mRN A]
&= ™

d[protein]
dt

= —yplprotein] + kp[mRN A]



Capturing Randomness in Gene

—Xpression Models

z‘ Stochastic model
g i Tp . ¢ e Probability a single mRNA is transcribed in
‘ g time dt is k,dt.
protein C ‘ e Probability a single mRNA is degraded in

time dt is (#mRNA) - v,.dt




Fluctuations at Small Copy Numbers

(@)
o
o

(o)}
o
o

.

ia‘

N
o
o

(=)

Protein Molecules
I
o
=)

0 1000 2000 3000 4000 5000
kp Time (s)

6)]

- = N DD
O'IO

O

M MMM Mum i HM fﬂh g

ik

‘éﬂlrw'ﬂ H i W Hllll 1“ I W |

o

—_—
=
MRNA Molecules

o

0 1000 ZQOO 3000 4000 5000
Time (s)



Fluctuations at Small Copy Numbers

protein t ‘

-

krkp
YrYp

Yr
> ) = 2

1 (1 kp )1/2 (protein)

n(p) = @ -

E(r) = &
" (MRNA)

VE®@)

standard iation
Cy = coefficient of variation = deviatio

mean




—Xploiting the

Randomness



Noise Induced Oscillations

Circadian rhythm
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* Oscillations disappear from deterministic model after a small reduction in deg. of repressor
* (Coherence resonance) Regularity of noise induced oscillations can be manipulated
by tuning the level of noise [EI-Samad, Khammash|



Stochastic Focusing: Fluctuation Enhanced Sensitivity
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Bacterial Competence

e Competence is a process by which bacteria takes up foreign DNA

e Only a fraction of cells become competent
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Stochastic Modeling Framework



A Simple Example

~ . .
MRNA @\3 "('(;)'L> N gb MRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
|k IS transcribed in time dt is k dt

Degradation: Probability a single mRNA
IS degraded In time dt is nvydt

k

(n — 1)7 7y (n4 1)y



 Gumien

- 1)y Y (n+ 1)y

Find p(n,t), the probability that N(¢t) = n.

Pn,t+dt) = P(n—1,t) - kdt Prob.{N(t) =n — 1 and mRNA created in [t,t+dt)}
+ P(n+1,t)-(n+ 1)ydt  Prob.{N(t) =n+ 1 and mRNA degraded in [t,t+4dt)]

+ P(n,t) - (1 —kdt)(1 —nvydt) Prob.{N(t) =n and
MRNA not created nor degraded in [t,t4dt)}

P(n,t+dt) — P(n,t) = P(n— 1,0)kdt + P(n+ 1,t)(n 4+ 1)vdt — P(n,t)(k + nvy)dt
+0(dt?)

Dividing by dt and taking the limit asdt — O

The Chemical Master Equation

%P(n,t) = kP(n—1,t)+ (n+1)vP(n+1,t) — (k4 nvy)P(n,t)




MRNA Stationary Distribution

We look for the stationary distribution P(n,t) = p(n) Vt
T he stationary solution satisfies: %P(n,t) =0

From the Master Equation ...
(k+ny)p(n) =kp(n —1) + (n+ 1)yp(n + 1)

n=~0 kp(0) = vyp(1)
n=1 kp(1) = 2vp(2)

n =2 kp(2) = 3vp(3)

[ kp(n — 1) = ny p(n) J




kp(n —1) = nvy p(n) We can express p(n) as a function of p(0):

p(n) = =1 pn—1)
7”2
= (k> Ll pn-2)
Y] nn-—

[
7 N
=2 |
N—————
S
3|
e
N\
)
N’

o
We can solve for p(0) using the fact » p(n) =1

00 n n=0
1 = > <k> ip(O)

Poisson Distribution



Poisson, a = 3
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Formulation of Stochastic Chemical Kinetics

Reaction volume=X?

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region d<2 is
given by %.

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature 7T'. The velocity of a
molecule is determined according to a Boltzman distribution:

m 2

foz (V) = fo,(v) = fo.(v) = QWZLBT e 26T




Stochastic Chemical Kinetics

e (N-species) S1,...,Sy. Population
of each is an integer r.v.:

X(t) = [X1(8),..., Xn(®]"

e (M-reactions) The system’s state
can change through any one of M
reaction: R, :ke{l,2,...,M}.

population of S»
A

;
3
b
T

e (State transition) Firing of reac-
tion R; causes a state transition
from X(t) =z to X(tT) =z + s;.

Trrrirvn
~ QOO0 00«0«

1
1
1
1
>
ow&:

0 1 2 3 4
population of 53 Stoich. matrix: S = [ S1 - S)M }

e (Transition Probability) The probability that reaction R; fires in
the next dt time units is: wy(x)dt.

Example: wi(x) = c1; wolx) = co - xix0, wi(w) = c3xq;



The Chemical Master Equation

X (t) is Continuous-time discrete-state Markov Chain

p(x,t) ;= prob(X(t) = x)

The Chemical Master Equation (Forward Kolmogorov Equation)

DD — e, t) Y i) + Yp(e — sp e — 55)
k k




From Stochastic to Deterministic

- X
Define X$2(t) = %

Question: How does X%2(t) relate to ®(¢)?

Fact: Let ®(¢) be the deterministic solution to the reaction rate equa-

tions
dP

d— = Sf(P), ®(0) = bo.
t
Let XQ(t) be the stochastic representation of the same chemical sys-
tems with X$2(0) = ®y. Then for every t > 0:
im sup \XQ(S) - @(s)\ =0 a.s.

Q—o00 SSt




Simulation and Analysis Tools




1. Sample Paths Computation

Gillespie’s Stochastic Simulation Algorithm:

To each of the reactions {Ri,..., Ry} we associate a RV 7;:

7; IS the time to the next firing of reaction R;

Fact O: 7; is exponentially distributed with parameter w;

We define two new RVs:
T =min{7;} (Time to the next reaction)

pw=arg min{r;} (Index of the next reaction)

Fact 1: 7 is exponentially distributed with parameter ZZ w;
Wi,

Zi Wi

Fact 2: P(u=k) =




Stochastic Simulation Algorithm

e Step O Initialize time t and state population x

e Step 1 Draw a sample 7 from

the distribution of r

Cumulative distribution of 7 : F(t) = 1 —exp(— ), wyt)

r1 € U([0, 1] )—>frererereens E

1 | 1

/ T g 91
0 :

time (s)

e Step 2 Draw a sample p from the distribution of u

Cumulative distribution of u

ro € U([O7 ]_]) N

1 2 3 4 5

reaction index

e Step 3 Update time: t <+ ¢+ 7. Update state: z «— x + s,.

(w1 + wo + w3z + wa)/ | wy
(w1 + w2 +w3)/ Xk wi

(w1 4+ w2)/ >k wy

w1/ Yk Wk



2. Moment Computations

Let w(z) = [wi1(x),...,wy(x)]! be the vector of propensity functions

Moment Dynamics

PR = 5 Blu(x)]
dE[iz(tXT] = SEw(X)XT]+ E[Xw" (X)]ST + 8 diag(E[w(X)]) ST

e Affine propensity. Closed moment equations.
e (Quadratic propensity. Not generally closed.

— Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)
— Derivative Matching (Singh, Hespanha)



3. SDE Approximation

Q) .— X()

Write X% = dg(t) + \}_VQ where ®g(t) solves the deterministic RRE

dd
= Si(®)

Linear Noise Approximation

V() — V() as Q — 0o, Wwhere dV (t) = A1)V (t)dt + B(t)dW,;

d[Sf(®)]
dP

At) = (Po(t)), B(t) := Sy/diag[f(®o(t))]

Linear Noise Approximation: X 2(¢) ~ ®(t) \/%V(t)




Qo (mean)

""’““" MW' M"! W (white gaussian noise)




Density Computation
Goal: Compute p(x,t), the probability that X (t) = .

Enumerate the state space: X = {x1,x2,23,...}

Form the probability density state vector P(X,-) : RT — ¢4

P(X,t) := [p(x1,t) plxo,t) plzs,t) ... ]F

The Chemical Master Equation (CME):

dp(da; V= pan 2 wi(@) + 3 p(x — sg, Ywp(e = sp)
k k

can now be written in matrix form:

P(X,t) = A - P(X,t)



The Finite State Projection Approach
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The Finite State Projection Approach

e A finite subset is appropriately
chosen




The Finite State Projection Approach

‘|

e A finite subset is appropriately
chosen

 The remaining (infinite) states are
projected onto a single state (red)




The Finite State Projection Approach

e On

‘)

e A finite subset is appropriately
chosen

 The remaining (infinite) states are
pro

jected onto a single state (red)

y transitions into removed

states are retained

The projected system can be solved exactly!



Finite Projection Bounds

Notation: For a matrix A, let Ay to be the principle submatrix
of A indexed by J, where J = [mq...mn].

Projection Error Bounds Consider any Markov process de-

scribed by the Forward Kolmogorov Equation:

P(X:;t) = A -P(X;t).

If for an indexing vector J: 11 exp(A;T)P(X;;0) > 1 —¢, then

) _feonrao)| oo e

Munsky and Khammash, Journal of Chemical Physics, 2006



—xample: Analysis of A Synthetic Stochastic Switch

5 ; i Gardner, et al., Nature 403, 339-342 (2000)
52 Gene S2 Promoter
Two repressors, u and V. _L—_%
u
v Inhibits the production of u: e
al(u,v) ) ! jlvﬁ o [ é ] 003\ g T
u inhibits the production of v: -
a0 =g w=[1)
I+ u” 1 0014 _
u and v degrade exponentially: -

) P —— [ = ]

as(u,v) =v Vs = [ O ]

a; =50 (=25

as =16 ~v=1 u(0) =v(0) =0



Using Noise to Identify Model Parameters



Why use noise”

? ? ¢
IPTGouyr=—» IPTGyN _>T’)
Lacl -
| ?
I lacl Promoter J— - ?
lacl lacl lac GEFP

e Noise provides an excitation source for the network dynamics

e Resulting distributions of proteins can be measured

e Such distributions provide a lot of information about the dynamics
e Can they be used to identify model parameters?

e Noise has been used to discriminate among competing models

Dunlop et. al (2008). Nature Genetics. Regulatory activity revealed by dynamic correlations in gene expression noise.



|dentification from Moment Information

J &
v(t):=| E{z} E{s?} Ely} E{*} E{ay} |

prc%;in 33 2 y

—Y1 O k"21 0 O ]\1
I k2 Y1 + 2L1 —2"!’1 k'zl 0 2L21 ]‘1
|:il[j\| R % % l > ¢ Vi= ko 0 —"2 0 0 v+
m ko 0 Yo o —272 2k
|T ki —Fki2 -y I 0 ke k1 ka1t -1 — 72
= Av-<b
Identifiability

Can one identify the parameters A\ = {k1, 71, k2, 72, k21 } from measurements
of the moments v(t)?



|[dentifying Using Steady-State Moments

J Can the stationary distribution be used to identity
orotein 3 ‘ Vo all the parameters?
[ g

|

kg
v(t) :=[E{;1?} E{z*} E{y} E{y*} E{Iy}]

Voo = tlim [v1, v2, v, vy, ‘Us]T-
> 00

Full Identifiability with Stationary Moments

e Full identifiability is impossible using only vsc.
Munsky et. al, MSB, 2009

e Identifiability is possible if tlim Elx(t)x(t + s)] is available.
— OO

Cinquemani et al, lect. notes comp. sci, 2009




|[dentifiability from Transient Time-Measurements

J &
v(t) :=[E{;r} E{z*} E{y} E{y*} E{;vy}]

oo & o
¢ 33 g

I ko Multiple Measurements
X N § Suppose v; := v(t;) has been measured at equally
mRNA % % ’ : P
separated points in time {tg,t1,...,tm }
|I k1 — k12 -y

Identifiability with Multiple Moment Measurements
For m = 6 the model parameters are identifiable.




|dentification with Two Measurements

Identifiability of Transcription Parameters

Suppose the mean and variance are known at two times tg < t1 < 00,
and define (/10,0'0) = (,u(t()), O'(t())) and (,ul,al) = (,Lb(tl), O'(tl)).

Then the transcription parameters are identifiable, and

1 2 — exp(—
y = _2_ 10 (O’; ,ul) L — f}/Mll Xp( ’77_),“0 . (,7_ =t — tO)
T o — Ho — exp(—77)

3 Identifiability of Transcription & Translation
protein

Parameters

T
v(t) 2=[E{I} E{z?} E{y} E{y°} E{Iy}]

e Given v(tg) and v(t1), identifiability of all parameters k1, k2, v1, 72
is generically possible.

e An expression exists for finding the parameters.




Using Densities to ldentify Network Parameters

e Moment equations can be written only in special cases.

e Densities (distributions) contain much more information than first two
moments.

e Using the Chemical Master Equation, we propose to use density measure-
ments for model identification.

Using Density:
Suppose we measure P at different times: P(tg),P(¢t1),...,P(tny_1)

We can use these to identify unknown network parameters \:

Find X subject to
PFSP _ A()\)PFSP

P (1) = P(to)
PP (4) = P(t1)

PP (ty_1) : P(ty_1)



Tsien Lab, UCSD
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|dentification of /lac Induction

0
\
[PTGOUT_-» IPTGIN —4
Lacl
I lacI Promoter J—
lacl lacl lac GFP
Model
b SL, L acr
Lacl 2L, ¢ 51, =680 + 6V IPT G
wea _ kg
¢ — GFP YC T T aLac
GFP 25, ¢
PTG = IPTGoyT(1—e™) 9 unknown parameters!
=Xperiment

e F. coli strain DL5905
e Induced with different IPTG concentrations: 5,10, 20, 40, 100 uM
e Induction times: 0, 1, 2, 3, 4, 5 hours before flow cytometry



|dentified

kr =1.7x 1073 s 1

ko =10x10"1s! n=21
{ 50 =31x104N1s71 6V =50%x1072 (uM-N)~1s71 o =1.3x 104 N~" }
Parameters r=28x10"5g"1 pepp = 220 AU oarp = 390 AU
O hr 3 hr 4 hr 5 hr
10° 10 10® 10* 10° 10* 10° 10°
o1 q =0 q =1 q =2 q=5 5 1M = == Model
|dentified Model 0 _— |
. 4 . Experiment
vS. Experiment o.1|ff q=0 q=2 q =2 =10 pM
0
0.1 q =O q =2 q =2 q =3 20 MM
O 2 4 2 4 2 4 2 4
10 10* 10> 10* 10> 10* 10° 10
0 hr 3 hr 4 hr 5 hr
0.1
0.05 40 uM
Model 97 10° 107 10* 107 10° 10° 10°
Predictions 0.1 ¢ i
05 & Y 100 uM
0% y y ; = ;

B. Munsky, B. Trinh, M. Khammash, Nature Molecular Systems Biology, in press.



Conclusions

e Randomness “noise” leads to cell-cell variability
» Stochastic models are necessary

e Some stochastic analysis tools available (more needed)
» Kinetic Monte Carlo
» Moment approximation
» Linear noise approximation (van Kampen)
» Density computation (FSP)

¢ Noise reveals network parameters
» Enabling technologies: flow cytometry and FISH/microscopy
» A small number of transient measurements suffices
» FSP exploits full pdf measurements

» Cellular noise (process noise) vs. measurement noise (output noise)
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