

Redesigning a bacterial twocomponent system to exhibit desired responses

Yo-Cheng Chang

Oxford Centre for Integrative Systems Biology, Department of Biochemistry Control Group, Department of Engineering Science University of Oxford

22/07/2011 RoSBNet Meeting

Modern biology: from sequences to networks to modules

R. Milo et al., Science, 2002

Stein L., Nat Rev Genet., 2001

Modular, bottom-up synthetic biology

- Challenge: designing and constructing biological components with robust and desired responses, and scale-up to higher organizational levels.
- Idea: Can we design a universal biological component which consists of simple modular elements, and has potential to exhibit many different responses as desired?

E. Andrianantoandro et al., Mol. Syst. Biol., 2006

Idea of designing a universal input-output component for synthetic biology

The modular, specific, and speedy bacterial two-component system as a target to redesign

The chimeric Taz-OmpR system

Part I: The robust, switch-like Taz-OmpR system

The intrinsic robustness of the Taz-OmpR system also makes it less tunable

- The original Taz-OmpR system acts as a robust switch. The steady-state output of the system is conditionally robust within the range of normal biological conditions.
- The output is tunable only at high [Taz_T] low [OmpR_T] with high [Asp_T].
- However, over-expressing membrane protein Taz may cause toxicity to the cell, and deleting the high-level regulator OmpR may mess up the whole regulation network in the cell.

Part II: The graded, tunable writer-eraser design

- For the original Taz-OmpR system, it is difficult to tune the steady-state level of output OmpRp in biological conditions.
- The truncated version of Taz, Tazc, consisting of only the HAMP domain and the kinase domain, can be an additional phosphatase for the redesigned system.

Yoshida *et al*., 2007

- The steady-state level of OmpRp can be tuned in a wide range, and can still respond to the level of input aspartate.
- The response becomes more graded, i.e., the linear region is much larger than the original system.
- In short, the system is redesigned from a robust switch to a tunable sensor.

Part III: The adaptive feedback design

- Using PompC to control the expression of the truncated Taz in order to make a negative feedback for the Taz-OmpR system.
- In theory, adaptation can happen within some parameter regions. However in experiment only two parameters are able to be tuned:
 - The copy number of plasmid carrying Tazc
 - The degradation rate of Tazc.

T.-M. Yi et al., PNAS, 2000

Experiments for the adaptive feedback design

- The redesigned system exhibits adaption in experiment.
- The remaining output level at steady state is tunable by the level of input aspartate.

- A combinational promoter which consists of PompC and part of Plac is designed to connect the Taz-OmpR system with a minimal oscillatior module.
- The oscillation is driven by the input aspartate, and the frequency is based on the level of input aspartate, like a biological function generator.

Simulations for the inputdriven oscillator

200

200

Experiments for the input-driven oscillator

Dynamics of the modified minimal oscillator

Summary: Redesigning a bacterial twocomponent system to exhibit desired responses

The sensory, regulatory and output modules are all switchable now!

How to deal with large biological networks?

Binding/dissociation

d[mRNA(DnaK)]	_	$Ktr_1 \left[\sigma^{32} \cdot RNAP \cdot ph \right] = \alpha_{mRNA} \left[mRNA(DnaK) \right]$
dt	_	
$\frac{d[Dna\kappa_t]}{dt}$	=	K_{TL} .[mRNA(DnaK)] – α_{prot} .[DnaK _t]
$\frac{d[mRNA(FtsH)]}{dt}$	=	$Ktr_2.[\sigma^{32}: RNAP : ph] - \alpha_{mRNA}.[mRNA(FtsH)]$
$rac{d[extsf{FtsH}_t]}{dt}$	=	K_{TL} .[mRNA(FtsH)] – α_{prot} .[FtsH _t]
$\frac{d[mRNA(protease)]}{dt}$	=	$Ktr_3.[\sigma^{32}: RNAP : ph] - \alpha_{mRNA}.[mRNA(protease)]$
$\frac{d[protease_t]}{dt}$	=	K_{TL} .[mRNA(protease)] – α_{prot} .[protease _l]
$\frac{d[mRNA(HsIVU)]}{dt}$	=	$Ktr_{4}.[\sigma^{32}: RNAP : ph] - \alpha_{mRNA}.[mRNA(HsIVU)]$
$rac{d[HsIVU_t]}{dt}$	=	K_{TL} .[mRNA(HsIVU)] – α_{prot} .[HsIVU _t]
$\frac{d[mRNA(\sigma^{32})]}{dt}$	=	$Ktr_{5}.[\sigma^{70}: RNAP : pg] - \alpha_{mRNA}.[mRNA(\sigma^{32})]$
$rac{d[\sigma_t^{32}]}{dt}$	=	$\eta(T) \cdot K_{TL} \cdot [mRNA(\sigma^{32})] - r\alpha_{prot}.[\sigma_f^{32}] - \alpha_{FtsH}.[\sigma^{32}: DnaK : FtsH]$
		$- \alpha_{protease}(T).[\sigma^{32}:DnaK:protease] - \alpha_{HslVU}(T).[\sigma^{32}:HslVU]$
$\frac{d[Pfolded]}{dt}$	=	K_{fold} .[Punfolded : DnaK] – $K(T)$.[Pfolded]

Mass balances

[RNAP _i]	=	$[RNAP_{f}] + [\sigma^{70}: RNAP] + [\sigma^{32}: RNAP] + [RNAP: D] + [\sigma^{70}: RNAP: D]$
	+	$[\sigma^{32}: RNAP: D] + [\sigma^{70}: RNAP: pg] + [\sigma^{32}: RNAP: ph]$
$[\sigma_{t}^{32}]$	=	$[\sigma_{I}^{32}] + [\sigma^{32}: DnaK: protease] + [\sigma^{32}: RNAP] + [\sigma^{32}: RNAP: D]$
	+	$[\sigma^{32}: DnaK : FtsH] + [\sigma^{32}: DnaK] + [\sigma^{32}: RNAP:ph] + [\sigma^{32}: HslVU]$
[DnaK _i]	=	$[DnaK_f] + [\sigma^{32}: DnaK : FtsH] + [\sigma^{32}: DnaK] + [Punfolded : DnaK]$
	+	$[\sigma^{32}: DnaK: protease]$
$[\sigma_t^{70}]$	=	$[\sigma_{f}^{70}] + [\sigma^{70}: RNAP] + [\sigma^{70}: RNAP : D] + [\sigma^{70}: RNAP : pg]$
[FtsH _i]	=	$[FtsH_f] + [\sigma^{32}: DnaK : FtsH]$
[HsIVU _l]	=	$[HsIVU_f] + [\sigma^{32}: HsIVU]$
[protease _i]	=	$[protease_f] + [\sigma^{32}; DnaK : protease]$
[Protein _i]	=	[Punfolded] + [Punfolded : DnaK] + [Pfolded]

Gene expressions

$[\sigma^{70}: RNAP]$	=	$K_1.[\sigma_f^{70}].[RNAP_f]$
$[\sigma^{32}: RNAP]$	=	$K_2.[\sigma_f^{32}].[RNAP_f]$
[RNAP : D]	=	$K_3.[RNAP_f].[D_i]$
$[\sigma^{32}: DnaK: FtsH]$	=	$K_4.[\sigma^{32}: DnaK].[FtsH_f]$
$[\sigma^{32}: DnaK]$	=	$K_5.[\sigma_f^{32}].[DnaK_f]$
σ^{32} :DnaK : protease]	=	$K_6.[\sigma^{32}:DnaK].[protease_f]$
$[\sigma^{32}:HslVU]$	=	$K_7.[\sigma_f^{32}].[HslVU_f]$
[Punfolded : DnaK]	=	K_8 .[Punfolded].[Dna K_f]
$[\sigma^{32}: RNAP: ph]$	=	$K_9.[\sigma^{32}: RNAP]([ph_t] - [\sigma^{32}: RNAP : ph])$
$[\sigma^{70}:\ {\it RNAP}:\ {\it pg}]$	=	$K_{10}.[\sigma^{70}: RNAP]([pg_i] - [\sigma^{70}: RNAP: pg])$
$[\sigma^{70}: RNAP:D]$	=	$K_{11}.[\sigma^{70}: RNAP].[D_i]$
$[\sigma^{32}: RNAP : D]$	=	$K_{12}.[\sigma^{32}: RNAP].[D_t]$

(manual process, though)

Reduced, analyzable form

$$\begin{aligned} \frac{dS_t}{dt} &= \eta(T) - \alpha_0 S_t - \alpha_s S : D : F \\ \frac{dD_t}{dt} &= K_d S_f - \alpha_p D_t \\ \frac{dU_f}{dt} &= K(T) P_{folded} - K_{fold} U : D \end{aligned}$$

El-Samad et al., 2005

Automated model reduction

Original model of the EGFR-MAPK pathway

Schoeberl et al., 2002

Reduced model of the EGFR-MAPK pathway

Nonlinear system output comparison

Conclusion: the overall process of redesigning a synthetic biological component

Increase of the organisational complexity

"Low Level" process

Analyzing the behavior of the original Taz-OmpR system

- Model construction
- Analytical solutions and simulations
- Parametric performance/ robustness analysis

"Medium Level" process

Modifying the original Taz-OmpR system for the desired behaviors

- Writer-eraser design
- Adaptive feedback design

"Higher Level" process

Connecting the Taz-OmpR module with other synthetic modules for new functions

Common Technical Bases

- Repository of standardised parts for experimental tests
 - Algorithm for linear model reduction analysis

Input-driven oscillator

Future aims: Scalable multi-cellular / in-vitro synthetic biological components

• Attempt to make a sense-and-respond artificial cell, better self-sustaining

Acknowledgement

- Prof. Judy Armitage
- Dr. Antonis Papachristodoulou
- Dr. George Wadhams
- OCISB
- LSI DTC
- RoSBNet
- Taiwan's Ministry of Education scholarship for studying abroad

Engineering and Physical Sciences Research Council

