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Brian Goodwin on networks and evolution

First model of gene regulation
First model of oscillatory genetic circuit
Theory of gene networks

Form and Transformation: Generative and Relational
Principles in Biology,
Cambridge Univ Press, 1996.

How the Leopard Changed its Spots: The Evolution of
Complexity,
Scribner, 1994
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Where does network complexity come from?

Selection, Tinkering, and Emergence in
Complex Networks

Complexity, 2003

RICARD V. SOLE,"Z RAMON FERRER-CANCHO,' JOSE M. MONTOYA,'® AND SERGI VALVERDE'
'ICREA-Complex Systems Lab, GRIB-UPF, Barcelona, Spain

“Sante Fe Institute, Santa Fe, NM 87501
FDepartment of Ecology, University of Alcald, Madrid, Spain

Summary of the Basic Features that Relate and Distinguish Different Types of Complex Networks, Both Natural and Artificial
Property Proteomics Ecology Language Technology
Tinkering Gene duplication and recruitation Local assemblages from Creation of words from Reutilization of modules and
regional species pools and already established ones components
priority effects
Hubs Cellular signaling genes (e.g., Omnivorous and most Function words Most used components
p53) abundant species
What can be optimized? Communication speed and linking Unclear Communication speed with Minimize development effort
cost restrictions within constraints
Failures Small phenotypic effect of Loss of only a few species- Maintenance of expression Loss of functionality
random mutations specific functions and communication
Attacks Large alterations of cell-cycle and Many coextinctions and loss Agrammatism (i.e., great Avalanches of changes and large
apoptosis (e.g., cancer) of several ecosystems difficulties for building development costs
functions complex sentences)
Redundancy and degeneracy Redundant genes rapidly lost R minimized and D restricted Great D Certain degree of Rbut no D
to non-keystone species
Here different characteristic features of complex nets, as well as their behavior under different sources of perturbation, are considered.
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What 1s the role of tinkering?

Are network motifs the spandrels of cellular
complexity?
Ricard V. Solé'? and Sergi Valverde'

"ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
“Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
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“Natural selection does not T LAl J. R. Soc. lv;frr{c(lrr -,:m:;-’.:s»l:x;
i doic 101008/ rsif 20071108
work as an engineer but as a nterface Published online 11 July 2007

tinkerer, limited by the
constraints present at all
levels of biological
organization”

Francois Jacob

Science 196: 1161-1166
(1976)

REPORT

Spontaneous emergence of
modularity in
cellular networks

Ricard V. Solé"** and Sergi Valverde'*
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Tinkering 1s widespread, even 1n Tech

PHYSICAL REVIEW E 72, 026107 (2005)

EUROPHYSICS LETTERS Network motifs in computational graphs: A case study in software architecture

Europhys. Lett., T2 (5), pp. 858-864 (2005)

i Sergi Valverde' and Ricard V. Solé"?
DOI: 10.1209/epl1/i2005-10314-9
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SynBi10, evolution, functionality and design

With rare exceptions, Darwinian evolution requires established
species to become extinct so that new species can replace them.

Now, after three billion years, the Darwinian interlude 1s over.

Our Biotech future

Freeman Dyson

http://www.nybooks.com/articles/archives/2007/jul/19/our-biotech-future/
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A common description of functionality

All biological systems perform some kind of computation. Computation is
inherent to adaptive systems and makes biology different from physics.

John Hopfield

Physics, computation and why biology looks so different.
J.- Theor. Biol. 171, 53-60 (1994)
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Cells and molecules as computers

REVIEW ARTICLE

Protein molecules as computational
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Many proteins in living cells appear to have as their primary function the transfer and processing i NS T
of information, rather than the chemical transformation of metabolic intermediates or the 2/\&' m
building of cellular structures. Such proteins are functionally linked through allosteric or other \P)
mechanisms into biochemical ‘circuits’' that perform a variety of simple computational tasks
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Synthetic biology: milestones

letters to nature

Construction of a genetic toggle
switch in Escherichia coli

Timothy S. Gardner*, Charles R. Cantor* & James J. Collins* i

rbs B

* Department of Biomedical Engineering, T Center for BioDynamics and % Center GFPmMut3

for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston,
Massachusetts 02215, USA
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Synthetic biology: repressilator

Repressilator Reporter A molecular clock out
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Synthetic biology: edge detector
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Synthetic biology: edge detector

A Synthetic Genetic Edge Detection Program

Jeffrey J. Tabor,' Howard M. Salis,' Zachary Booth Simpson,?3 Aaron A. Chevalier,?? Anselm Levskaya,’
Edward M. Marcotte,224 Christopher A. Voigt,'* and Andrew D. Ellington22.4
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Theoretical models of computation

Turing, A. M. "On Computable
Numbers, with an Application to
the Entscheidungsproblem.”

Proc. London Math. Soc. Ser. 2
42, 230-265, 1937.

Turing machines

/ Machine with finite
Sensor to read,

number of states

Moving tape

A Turing Machine
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Universal gates: NAND and NOR

2-input NAND gate

InputA—} Output
Inputy—

A | B | Output
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Combining logic circuits

Combining multiple small gates we obtain more complex
circuits. The output is located at some given subset of elements

Thursday, August 11, 2011



Can we get solutions from enginering?

Nucleic Acids Research, 2003, Vol. 31, No.22 66636673

DOI: 10.1093/nar/eke877

Molecular flip—flops formed by overlapping Fis sites
Paul N. Hengen, llya G. Lyakhov, Lisa E. Stewart' and Thomas D. Schneider’*

Intramural Research Support Program, SAIC and 'Laboratory of Experimental and Computational Biology,

NCI Frederick, Frederick, MD, USA

[
T ———

Figure 8. NOR gate molecular computer. An activator protein molecule A
(green plus) binds to a DNA molecule at position a. When the activator
binds, it turns on the promoter for gene D. Two repressor protein molecules
R1 and R2 (red circle and red hexagon, respectively) bind to DNA at
positions rl and r2. Binding to either rl or r2 interferes with binding by A,
so the activator can only bind when the two repressors are absent.
Assigning the presence of a molecule as *17 or ‘true’ and the absence as *(
or ‘false’, then D = R1 NOR R2. By connecting such NOR gates together,
any computer circuit can be built.

FEVE HARD TRUTHS FOR
SYNTHETIC BIOLOGY

Can engineering approaches tame the complexity of living systems? Roberta Kwok explores five
challenges for the field and how they might be resolved.

A

NN

Problems: wiring and
combinatorics
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The wiring problem
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The wiring problem
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The wiring problem
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SFI Complexity and computation

EMERGE NT Proc. Nad. Acad. Sci USA

Vol. 92, pp. 1074210746, November 1995

o COMPUTATION Compuidy Sclences
SRt < edited by Stephane Forrest

The evolution of emergent computation

JAMES P. CRUTCHFIELD*T AND MELANIE MITCHELL?

Gram8 - Boenholdt - Gro$ - Mischell - Pellizzan

Non-Standard
Computation

Molecular Computation ~ Cellular Automata

*Physics Department, University of Callfornia, Borkeley, CA 9720 and 1Saata Fe Instituse, 1359 Myde Park Road, Santa Fe, NM 57401

PHYSICAL REVIEW

Evolutiomary Algorithms - Quantem Computers

A LETTERS
e L\ S Vouums 63 10 JULY 1989 Nunnsn 2
- g \ W
f * N\ Inferring Statistical Complexity
/ ' ‘ James P. Crutchficld ™’ and Karl Young ™’

Fhysics Deparrmens, Usicersity of California, Berkeley, California 94720
IRecoived |3 December 19848)
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Collective intelligence and computation

No central control

Distributed decisions
Simple individuals, complex CI

PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Collective-induced computation

Jordi Delgado'?* and Ricard V. Solé??
*Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain
"('omp{c.r Systems Research Group, Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya,
Sor Eulalia d'Anzizu s/n, Campus Nord, Modul B4, 08034 Barcelona, Spain
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
(Received 26 August 1996)
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Evolved designs
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Evolved designs
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Evolved designs
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Evolved designs
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Robustness, redundancy and degeneracy

Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 3257-3262, March 1999
Neurobiology

Measures of degeneracy and redundancy in biological networks

G1uLio ToNoNIT, OLAF SPORNS, AND GERALD M. EDELMAN
The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, CA 92121

;3: ﬁ‘;‘“ J. R. Soc. Interface (2009) 6, 393 400
doi:10.1098/rsif. 2008.023
(b) —r_>—r‘ﬂ Interface Published onl tlr:: ll(:;}‘;vptlel::: f..:fl’):
0 O . . .
3 Distributed robustness in cellular networks:

insights from synthetic evolved circuits

+1,2,%

Javier Macia' and Ricard V. Solé"
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How to solve 1t?

In any field, find the strangest thing
and then explore it.

John Wheeler
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The wiring problem: first approach

SYNTHETIC BIOLOGY

Division of logic labour NEVS & VIEWS

Cellular compartmentalization is an effective way to build gene circuits capable
of complex logic operations, in which binary inputs are converted into binary
outputs according to user-defined rules. SEE LETTERS P.207 & p.212
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molecules
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MULTICELLULAR
COMPUTING

Multicellular systems

cell consortia 1

CT1

distributed cell consortia 2

SINGLE-CELL
COMPUTING

single cell

molecular
toolkit
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Multicellular computing

LETTER

d0i:10.1038/nature09565

Robust multicellular computing using genetically
encoded NOR gates and chemical ‘wires’

Alvin Tamsir', Jeffrey J. Tabor? & Christopher A. Voigt?

el 2  — Cell 4
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Multicellular distributed computing

cell consortia 1
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single cell
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Multicellular distributed computing

LETTER R

Distributed biological computation with
multicellular engineered networks R

Sergi Regot'*, Javier Macia®, Niria Conde?, Kentaro Furukawa’, Jimmy Kjellén®, Tom Peeters', Stefan Hohmann®,
Eulalia de Nadal', Francesc Posas' & Ricard Solé™*~
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Multicellular distributed computing

( GFP ]

Several cells can provide the output
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Multicellular distributed computing
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Multicellular distributed computing
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Distributed computation
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Distributed computation
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Distributed computation: LEGO-like
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Non-standard combinatorial logic

B— ™
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Evolved, optimal circuits reveal atypical combinations of gates
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What’s next? Reprogramming

@ sTEM CELLS

(Systems biology of stem cell fate and
cellular reprogramming

Ben D. MacArthur*?, Avi Ma’ayan* and lhor R. Lemischka*
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What’s next? Microfluidic interface

-

AN}~

Insight: Lab on a chip
Vol. 442, No. 7101 pp367-418

Spatial embodiment and/or
iIncreased wire diversity allows
combinatorial explosion
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Multicellularity and swarm intelligence
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Multicellularity and swarm intelligence
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Biological computation morphospace
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http://complex.upf.es/
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